Что такое мутация у человека. Мутация - это изменение генома. Основные виды и примеры Мутация определение биология

  • 30.03.2024

МУТАЦИЯ (лат. mutatio изменение, перемена) - всеобщее свойство живых организмов, лежащее в основе эволюции и селекции всех форм жизни и заключающееся во внезапно возникающем изменении генетической информации. Для медицины изучение природы М. чрезвычайно важно с точки зрения профилактики и лечения наследственных болезней (см.).

Внезапное возникновение наследственных изменений было описано еще в 18-19 вв. Это явление было известно и Ч. Дарвину. Однако изучение явления М. началось только после сформирования экспериментальной генетики как науки с начала 20 в. Термин «мутация» в современном понимании стал употребляться в научной литературе с 1901 г. после выхода в свет книги X. de Фриса «Мутационная теория». Ранее словом «мутация» называли особи, отклоняющиеся по своим признакам от нормальных индивидов.

После установления того факта, что генетическая информация записана в молекулах нуклеиновых к-т, в теории М. произошел коренной перелом (см. Ген , Дезоксирибонуклеиновые кислоты). Позже было установлено, что наследуемые изменения могут происходить не только в ДНК хромосом, но и в ДНК цитоплазматических самовоспроизводящихся структур. В этом случае говорят о цитоплазматических М.

Процесс возникновения М. в естественных условиях или в результате экспериментального воздействия различных физ., хим. и биол, факторов называют мутагенезом (см.).

Особь, несущую М., действие к-рой проявляется в фенотипе, называют мутантом. М. могут изменять внешние признаки особи, ее физические особенности, биохим, процессы, нарушать процессы развития, ослаблять жизнеспособность (сублетальные М.) или даже приводить к гибели особи (летальные М.) и т. д. Наряду с М., влияние к-рых на развитие особи выражено отчетливо, существуют М., слабо изменяющие нормальное развитие особи. Такие М. получили название малых. М. могут возникнуть в зародышевых и в соматических клетках, в клетках культуры ткани и, наконец, в выделенных из клеток молекулах ДНК.

По действию М. могут быть вредными, нейтральными и полезными, правда, такая их оценка относительна, поскольку эффект М. зависит от условий окружающей среды. Напр., для бабочек, живущих на березах, М. меланизма вредны, ибо темных бабочек на светлых стволах берез легче обнаруживают птицы. Однако в индустриальных р-нах, где стволы деревьев темнее, М. меланизма стали полезными.

Учитывая значение М. для последующих поколений, их делят на генеративные и соматические. Генеративные М. возникают в зародышевых клетках и переходят в последующие поколения. Соматические М. не передаются потомству. Появляясь в одиночной клетке тела, они наследуются только потомками этой клетки, образуя в организме мутантную ткань. Естественно, что в случае вегетативного размножения соматические М. могут сохраняться длительно. Соматические М. широко известны и для животных организмов. У дрозофилы на ранних стадиях развития глаза нормальный аллель (см. Аллели), определяющий красную окраску глаз, в отдельной клетке может мутировать в аллель, определяющий белую окраску глаз. Клетка, содержащая вновь появившийся аллель, дает начало ткани, занимающей часть глаза, в результате чего на фоне красной окраски в глазу такой дрозофилы появляется сектор белого цвета (см. Мозаицизм). Соматическая М., возникающая на той или иной стадии онтогенеза, генетически выделяет исходную клетку и произошедшую из нее ткань, что в нек-рых случаях позволяет изучить закономерности индивидуального развития. Соматические М. могут оказать серьезное влияние на жизнь особи. Организм человека состоит примерно из 10 14 клеток. Если предположить, что нек-рый определенный ген мутирует с такой низкой частотой, как 10 -8 , то и в этом случае в организме человека должно содержаться более 10 6 клеток, несущих М. только в данном гене. Число генов у человека условно равно 10 5 . Даже если допустить, что частота мутирования предельно низкая (10 -8), все равно получается огромное число мутантных клеток (10 11). Это показывает, что очень большая популяция клеток тела человека испытывает на себе влияние М. Мутабельность, т. е. способность изменяться, резко повышена в клетках раковых опухолей. По-видимому, в ряде случаев появление рака объясняется соматическими М. с последующей тканевой селекцией.

Успешное развитие исследований по культивированию тканей человека позволило в прямых опытах определять частоту М. генов в клетках, а также исследовать генетическую природу злокачественного роста в эксперименте.

Признаки, присущие данному виду, вырабатываются в процессе эволюции и контролируются нормальными аллелями, к-рые обычно доминантны по отношению к другому гену аллельной пары. Очевидно, что мутационный процесс, идущий в нормальных особях, в основном превращает доминантные нормальные аллели в мутантные рецессивные. Однако процесс мутирования обратим. Последующие М. в мутантном гене приводят к появлению не только серии других рецессивных аллелей, но и к возникновению нормальных доминантных аллелей. Изменения нормальных аллелей в мутантные называют прямыми мутациями (А -> а), превращения мутантных рецессивных аллелей в нормальные доминантные - обратными мутациями (а -> А).

В естественных условиях М. появляются под влиянием факторов внешней и внутренней среды и обозначаются термином «естественные (или спонтанные) мутации». М., полученные в условиях эксперимента, называют индуцированными. Агенты, вызывающие М., получили название мутагенов (см.). В процессе естественного мутирования гены мутируют с определенной частотой. Средняя частота М. на один ген в одном поколении у бактерий - 10 -7 , у дрозофилы в зародышевых клетках - 10 -5 и т. д.

В одном и том же организме разные гены мутируют с разной частотой. Из восьми генов эндосперма кукурузы ген, контролирующий окраску, мутирует с частотой 496*10 -6 , ген Wx, контролирующий крахмалистость эндосперма, мутирует в 330 раз реже, с частотой, равной всего лишь 1,5*10 -6 . Частота мутирования остальных шести генов представляет среднюю величину между приведенными крайними значениями.

Определение частоты М. у человека гораздо сложнее, чем у бактерий или растений. Однако в нек-рых случаях она примерно установлена. Так, ген кишечного полипоза мутирует с частотой 10 -4 , а ген прогрессирующей мышечной дистрофии - с частотой 10 -5 . Частота мутирования при прямых М. (А -> а), как правило, выше, чем частота мутирования при обратных М. (а -> А); соотношение прямых и обратных М. характерно для каждого отдельного гена. Если учитывать частоту прямых и обратных М. суммарно по многим генам, то становится ясно, что процесс мутирования - это массовый, статистически хорошо фиксируемый процесс.

В 1921 г. Райт (S. Wright) предложил называть устойчивость массового процесса мутирования термином «давление мутаций», к-рый характеризует естественную жизнь популяций организмов (см. Популяционная генетика). Прямые и обратные М. не обязательно являются скачком от одного состояния только к другому. Рецессивные и доминантные аллели изменяются многообразно, в результате из одного и того же локуса (см.) в разных организмах возникает множество аллелей. Изучение популяций показало, что в нек-рых случаях количество аллелей для отдельных генов исчисляется десятками и даже сотнями. Ген W, локализованный в Х-хромосоме у дрозофилы и определяющий цвет глаз, имеет более десятка аллелей, к-рые контролируют эозиновый, медовый, абрикосовый, вишневый, коралловый и белый цвет глаз плодовых мушек. Ген С + , вызывающий появление серой окраски шерсти у кролика (агути), мутирует в три разных рецессивных аллеля: аллель C ch обеспечивает шиншилловую окраску кролика, аллель С h - белую с черными пятнами (гималайский кролик), аллель с - чисто белую.

Практически всякий ген, испытывая М., дает серию множественных аллелей. Классическим примером серии аллелей служат аллели генов групп крови (см.) у человека.

Антиген А. в эритроцитах появляется при наличии у людей гена IA, антиген В - при действии гена IB. Оба эти гена являются аллельными, их влияние независимо друг от друга, они не связаны доминантностью или рецессивностью. Такое независимое проявление аллелей, когда у гетерозиготных особей возникают два признака под действием двух аллелей, получило название ко доминантности.

Множественные аллели участвуют в создании естественных приспособительных биол, особенностей организмов.

Когда М. происходит в отдельном гене, говорят о генных, или точко-вых М. При изменениях структуры хромосом (структурные М., аберрации хромосом) или их числа, речь идет о хромосомных мутациях. Сущность аберраций хромосом состоит в дислокации участков хромосом, т. е. их перемещении внутри данной хромосомы или между разными хромосомами. В начальный период развития генетики наличие структурных М. хромосом устанавливалось путем генетического анализа (см.) и примитивного наблюдения за хромосомами. Возможность тонкого наблюдения хромосомных мутаций под микроскопом появилась после открытия гигантских хромосом в слюнных железах дрозофилы. В 1930 г. Д. Костов предположил, а Пейнтер (Т. S. Painter) в 1933 г. доказал, что видимая под микроскопом структура этих хромосом, представленная рядом последовательно расположенных дисков, отражает их генетическое содержание. Структурные М. широко представлены в популяциях растений, животных и человека, на их основе осуществляется эволюция видовых кариотипов (см.). Основными типами структурных М. хромосом являются делеции (см.), симметричные и асимметричные транслокации (см.), образование кольцевых хромосом (центрических и ацентрических), дупликации (см.), инверсии (см.).

Транслокации представляют собой обмен фрагментами между разными хромосомами. Это становится возможным при совпадении двух разрывов - одного в одной хромосоме и другого - в другой. Возникающие четыре фрагмента свободно комбинируются друг с другом.

Деления, т. е. потеря участка хромосомы, может произойти в результате одного разрыва хромосомы. Концевой фрагмент, лишенный центромеры, теряется. Такой тип делеций получил название концевых. При появлении двух разрывов средний участок хромосомы выпадает, а концевые фрагменты соединяются в одну хромосому. Так возникают интерстициальные делеции. Размер делеций может быть различным. В тех случаях, когда теряются заметные блоки генов, зиготы погибают. Сравнительно небольшие делеции передаются по поколениям через гетерозиготных особей. Однако при появлении зигот, гомозиготных по утраченному участку, они, как правило, погибают. М., вызванные делецией в этом случае, имеют летальный эффект.

У человека обнаружен ряд делеций, служащих причиной наследственных болезней. Так, концевая нехватка части короткого плеча 5-й хромосомы обусловливает появление так наз. синдрома крика кошки, интерстициальная делеция в 21-й хромосоме является причиной злокачественной анемии.

Явления дупликации, т. е. удвоения какого-либо блока генов в хромосомах, могут служить источником увеличения объема генетической информации видов, они важны с эволюционной точки зрения.

Термин «инверсия» был введен Стертевантом (A. H. Sturtevant) в 1926 г. при изучении кроссинговера у самок дрозофилы; он показал, что срединный участок одной из хромосом 3-й пары перевернут на 180°. Инверсии могут быть одиночными и сложными, последние приводят к заметной перестановке блоков генов. В случае, если при образовании инверсии оба разрыва проходят по одну сторону от центромеры, образуется парацентрическая инверсия. Такая инверсия не изменяет морфологии хромосом. Однако у гетерозиготных особей на инвертированном участке для заключенного в ней блока генов не происходит кроссинговера (см. Рекомбинация). Это обеспечивает наследование этого блока целиком. Если инверсия захватывает центромеру, то возникает перицен-трическая инверсия. Когда две инверсии непосредственно примыкают друг к другу, появляются так наз. тандемные инверсии. Этот тип инверсий имеет две формы: прямую тандемную инверсию (при сохранении обеими инверсиями исходно свойственных их блокам генов в хромосоме) и обратную тандемную инверсию, когда блоки генов, заключенные в инверсиях, меняются местами. При наличии одной инверсии вторая может произойти на ее внутреннем участке. Этот тип хромосомных М. называют включенной инверсией. Если вторая инверсия происходит с частичным захватом части материала первой инверсии и части генов из соседнего нормального района хромосомы, то ее называют заходящей. Причиной отсутствия на участке инверсии у гетерозиготных особей обмена генами являются биол, последствия кроссинговера. У гетерозиготной особи, имеющей нормальную хромосому - 12345678 и хромосому с инверсией - 12654378, кроссинговер на участке 5-6 приведет к появлению двух кроссинговерных хромосом - 126678 и 123455437 8. В половине таких хромосом часть генов потеряна, а в другой половине часть генов представлена в удвоенном количестве. Такие последствия кроссинговера наблюдают при парацентрических и перицентрических инверсиях. В последнем случае, кроме того, появляется хроматида с двумя центромерами (дицентрики) и фрагмент без центромеры. Появление несбалансированной хромосомы в зиготе приводит ее к гибели. Явление, когда у особей часть зигот регулярно погибает, а другая часть оказывается нормальной, получило название полустерильности.

Явление транслокации, лежащее в основе еще одного типа хромосомной М., состоит в переносе участка хромосомы на другую хромосому или в другое место той же хромосомы. В большинстве случаев при транслокациях хромосомы обмениваются участками. Эти транслокации назвали взаимными, в отличие от невзаимных транслокаций, когда средний участок одной хромосомы вставляется в другую хромосому. В этом случае для образования срединного фрагмента в одной хромосоме необходимы два разрыва. Хромосома, в к-рую вставляется посторонний срединный участок, разрывается в одном месте. Взаимные транслокации бывают двух видов: 1) симметричные, возникающие при таком обмене участками, когда в каждой хромосоме сохраняется по одной центромере (подобные транслокации связаны с сохранением всего генетического материала, к-рый по-разному распределяется между хромосомами, они передаются последующим поколениям); 2) асимметричные, наблюдающиеся при слиянии двух центромерных фрагментов и образовании дицентрической хромосомы. Соединение двух ацентрических фрагментов ведет к появлению одного ацентрического фрагмента. Во время репликации (см.) хромосом в фазе синтеза ДНК дицентрическая хромосома и ацентрический фрагмент удваиваются. В первом же митозе ацентрические фрагменты теряются. Что касается дицентрика, то он или образует хромосомный мост и рвется, или, при отхождении обеих центромер к одному полюсу, попадает в дочернюю клетку. Через ряд митозов дицентрик теряется. Симметричные транслокации благодаря действию сил притяжения гомологичных локусов в профазе мейоза (см.) образуют крестообразную конфигурацию. При расхождении из такой фигуры хромосомы часто образуют кольцо, состоящее из четырех хромосом. Поскольку симметричные транслокации сопровождают лишь перераспределение генного материала, особи, гетерозиготные по транслокациям, наряду с нормальными дают гаметы с нарушениями в виде больших дупликаций или делеций. Зиготы, возникающие при участии таких гамет, погибают, что приводит к полусте-рильности растений и животных, гетерозиготных по взаимной транслокации. Транслокации не только изменяют порядок генов, но и число хромосом в связи с приобретением или потерей центромер.

Своеобразным типом структурных М. служит появление кольцевых хромосом. В норме у животных и растений в кариотипе кольцевые хромосомы не встречаются. Образование кольцевой хромосомы связано с возникновением в одной хромосоме двух разрывов, в результате чего образуются два концевых и один срединный фрагмент. Срединный участок соединяется местами разрывов и замыкается в кольцо. Если срединный участок хромосомы включал центромеру, то возникает центрическое кольцо. Такая кольцевая хромосома передается поколениям клеток и организмов. Если кольцевая хромосома образуется из срединного участка хромосомы, лишенного центромеры, возникает ацентрическая кольцевая хромосома.

Существует два типа М. числа хромосом: анеуплоидия, т. е. потеря или появление дополнительных хромосом (единицей М. служат одна или несколько хромосом, число к-рых меньше, чем гаплоидный набор); гаплоидия и полиплоидия, кратное изменение числа хромосом, при них единицей М. служит гаплоидный набор хромосом (n). Гаплоидия - потеря целого набора (2n - n). Полиплоидия возникает при добавлении целых наборов (2n + n, 2n + 2n и т. д.). Особи, несущие три набора хромосом, называются триплоидами (Зn), четыре набора - тетраплоидами (4n) и т. д. Анеуцлоидии возникают в процессе митоза или мейоза, как правило, вследствие нерасхождения гомологичных хромосом. Для диплоидов характерны следующие типы анеу-плоидии: нулисомия - потеря пары гомологичных хромосом (2n - 2r, где r обозначает гомолог); моносомия - потеря одной хромосомы из какой-либо пары (2n - 1); трисомия - появление одной лишней хромосомы (2n + 1); тетрасомия - наличие двух лишних гомологичных хромосом (2n + 2r). При более сложных явлениях возможна двойная моносомия (2n - 1 - 1), двойная трисомия (2n + 1 + 1), сочетание двух типов (2n - 1, 2n + 1) и т. д. Анеу-плоидии вызывают нарушение генного баланса и, как правило, заметно изменяют признаки особи. Тетрасомия позволяет локализовать гены в определенных хромосомах, т. к. наличие четырех хромосом создает систему из трех аллелей у одного из родителей, что изменяет характер расщепления.

Анеуплоидии у человека объясняют появление целого ряда наследственных болезней. Впервые ане-уплоидию у человека обнаружили Ж. Лежен и др. в 1959 г. при анализе хромосом больного болезнью Дауна (см. Дауна болезнь). Оказалось, что больные имеют трисомию по 21-й хромосоме, регулярно возникающую с частотой 1 на 700 рождений. С частотой 1 на 5000 яйцеклеток вследствие нерасхождения X-хромосом возникает яйцеклетка, лишенная половой хромосомы (см. Пол). Женщины с генотипом ХО несут признаки синдрома Шерешевского - Тернера (см. Тернера синдром). В результате нерасхождения X-хромосом появляются люди с 47 хромосомами, включающими набор XXY. Дети XXY оказываются мальчиками с так наз. синдромом Клайнфелтера (см. Клайнфелтера синдром). Обнаружены и другие анеуплоидные изменения у человека, в частности трисомия и тетрасомия по Х-хромосоме и комбинированная трисомия. Сложные нарушения, числа половых хромосом обнаружены у мужчин (XXXY, XXYY, XXXXY, XYY) и женщин (ХХХХ, ХХХХХ). Анеуплоидия часто возникает как соматическая М. В случае соматической М. анеуплоидия в результате нерасхождения гомологов в митозе проявляется как хромосомная мозаика, при к-рой одни ткани имеют нормальный набор хромосом, а другие - состоят из клеток с анеуплоидным числом хромосом. У человека обнаружены хромосомные мозаики по половым хромосомам: ХО/ХХ, XO/XY, XX/XY, XXY/XX хх/ххх, ххх/хо, хххх/ххххх и др. (см. Хромосомные болезни).

Термином «гаплоидия» или «моно-плоидия» обозначают наличие в геноме только одного гомолога из каждой пары хромосом. У высших растений и животных диплоидность хромосом (парность аллелей) заключает в себе одно из преимуществ полового размножения, жизнеспособности организма при индивидуальном развитии, т. е. является важнейшим генетическим явлением.

Полиплоидия широко представлена у растений. Полиплоидные растения отличаются от диплоидных многими морфол., физиол, и биохим, особенностями. Их клетки и ядра имеют большие размеры, чем у диплоидов. Общие размеры растений, их цветки, семена и плоды увеличены.

Полиплоидия у животных распространена меньше, чем у растений. Это связано с тем, что для животных большое значение имеет генный баланс между половыми хромосомами и аутосомами. Отклонение от диплоидности у животных часто вызывает стерильность. Полиплоидные виды обнаружены среди червей, насекомых, ракообразных, рыб, амфибий, рептилий и других животных. Среди этих форм нек-рые виды утратили способность к половому размножению. Связь партеногенеза с по-липлоидностью установлена у рачков рода Artemia, мокриц Trichoni-seus, бабочек Solenobia и др. Тетра-плоидными формами, размножающимися половым путем, являются отдельные виды рыб, южноамериканская лягушка Odontophymis ame-ricanus и нек-рые другие организмы. Тихоокеанские лососи являются полиплоидами, то же касается ряда видов карповых рыб.

Причиной генных, или так наз. точечных, М. является замена одного азотистого основания в молекуле ДНК на другое, потеря, вставка или перестановка азотистых оснований в молекуле ДНК. В результате генных М. у человека могут развиться патол, состояния, патогенез к-рых различен. Потеря одного или нескольких нуклеотидов (деле-ция) может привести к нарушению последовательности аминокислотных остатков в полипептидной цепи кодируемого белка, т. е. к нарушению его первичной структуры. Делеция нескольких нуклеотидов может привести к полному прекращению синтеза белка, кодируемого мутантным геном. Аналогичный эффект возможен в случае превращения триплета, кодирующего включение в полипеп-тидную цепь определенной аминокислоты, в триплет, кодирующий окончание синтеза полипептидной цепи.

Генная М., не изменяя количество синтезируемого белка, может изменить его конформацию и тем самым - его ферментативную активность вплоть до полного ее исчезновения, и, наоборот, не влияя на ферментативную активность белка,- изменить скорость его синтеза, синтеза его ингибитора или активатора. Все это в конечном итоге приводит к развитию энзимопатий (см.).

Все генетическое разнообразие людей так или иначе является следствием М. Средняя частота возникновения М. на одну гамету человека оказалась близкой к 1*10 -5 . Частота М. нормального аллеля в аллель гемофилии (см.) или в аллель альбинизма (см.) составляет 3*10 -5 . Клетки костного мозга человека в культуре ткани мутируют от нормального аллеля в аллель устойчивости к 8-азагуанину с частотой 7*10 -4 .

Огромный полиморфизм в популяциях человека существует не только за счет отдельных генов, но и за счет их сочетаний, создающих полиморфные системы ферментов, групп крови, изменчивости по аллелям тканевой несовместимости в локусе HLA и др.

Библиография: Ауэрбах Ш. Проблемы мутагенеза, пер. с англ., М., 1978; Б а-р а ш н e в Ю. И. и Вельти-щ e в Ю. Е. Наследственные болезни обмена веществ у детей, JI., 1978; Бердышев Г. Д. и Криворучко И. Ф. Генетика человека с основами медицинской генетики, Киев, 1979; Б о ч-ков H. П. Генетика человека, М., 1978; Дубинин Н. П. Общая, генетика, М., 1976; М а к к ь ю с и к В. А. Наследственные признаки человека, пер. с англ., М., 1976; McKusick Y. Mendelian inheritance in man, Baltimore, 1978.

Помогите пожалуйста решить задачу и вопросы, даю все пункты, что есть. Задача: У некоторых людей клетки содержат только одну Х-хромосому (моносомики),

но людей, обладающих только Y-хромосомой, не существует. Объясните причину этого явления. Вопросы: 1) Охарактеризуйте зависимость между понятиями "ген", "аллель", "кроссинговер". 2) Что такое мутация? Когда и где происходит мутация? На вопросы очень много не надо. Своими словами. Спасибо заранее всем, кто поможет!)

1.Что такое размножение?2.Какие способы размножения встречаются у растений?3.Какой тип размножения называется половым?4.Как происходит половое размножение

у хламидомонады?5.Как размножается половым способом спирогира?6.Как размножаются мхи?7.Какие условия необходимы для полового размножения мхов?8.Где у цветковых растений развиваются спермии?9.Что такое пыльцевая трубка?10.Где у цветковых растений находится яйцеклетка?11.Как происходит двойное оплодотворение?12.Из какой клетки образуется эндосперм?13.Из чего образуется семенная кожура?14.Как образуется зародш семени?15.Что такое опыление?
Помогите пожалуйста

1)Что такое размножение? 2)Какие способы размножения встречаются у растений? 3)Какой тип размножения называется половым 4)Как

происходит половое размножение у хламидомонады

5)как размножается половым способом спирогира

6)как размножаются мхи

7)какие условия необходимы для полового размножения мхов

8)где у цветковых растений развиваются спермии

9)что такое пыльцевая трубка

10)где у цветковых растений находится яйцеклетка

11)как происходит двойное оплодотворение

12)из какой клетки образуется эндосперм

13)из чего образуется семенная кожура

14)как образуется зародыш семени

15)что такое опыление

1. Что характерно для мутации (возникает при скрещивании, при кроссинговере, возникает внезапно в ДНК или в хромосомах)?

2. Признаки какой изменчивости передаются потомству (модификационной, мутационной)?
3. Что подвергается изменениям при возникновении мутаций (генотип, фенотип)?
4. Наследуются признаки генотипа или фенотипа?
5. Для какой изменчивости характерны следующие признаки: возникают внезапно, могут быть доминантными или рецессивными, полезными или вредными, наследуются, повторяются (мутационная, модификационная)?
6. Где происходят мутации (в хромосомах, в молекулах ДНК, в одной паре нуклеотидов, в нескольких нуклеотидах)?
7. В каком случае мутация проявляется фенотипически (в любом, в гомозиготном организме, в гетерозиготном организме)?
8. Какова роль мутаций в эволюционном процессе (увеличение изменчивости, приспособление к окружающей среде, самосовершенствование организма)?
9. От чего зависит фенотип (от генотипа, от окружающей среды, ни от чего не зависит)?
10. Чем определяется размах изменчивости признаков организма (окружающей средой, генотипом)?
11. Признаки какой изменчивости выражаются в виде вариационного ряда и вариационной кривой (мутационной, модификационной)?
12. Какие признаки обладают узкой нормой реакции (качественные, количественные), какие более пластичны (качественные, количественные)?
13. Какая форма естественного отбора в популяции приводит к образованию новых видов (движущий, стабилизирующий), какая - к сохранению видовых признаков (движущий, стабилизирующий)?

Мутации – это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора. отличия от модификаций

Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.

Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика.

Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом.

Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.

Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом – 47).

Цитоплазматические мутации – изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений – пестролистность.

Соматические – мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).

Виды мутаций

Изменения в структуре ДНК

Изменения в структуре белка

ЗАМЕНА

Без изменения смысла кодона

Замена одного нуклеотида в кодоне

Белок не изменён

С изменением смысла кодона (миссенс-мутация)

Происходит замена одной аминокислоты на другую

С образованием терминирующего кодона (нонсенс-мутация)

Синтез пептидной цепи прерывается, и образуется укороченный продукт

ВСТАВКА

Вставка фрагмента ДНК из 3 нуклеотидов или с числом нуклеотидов, кратным 3

Происходит удлинение полипептидной цепи на одну или несколько аминокислот

Вставка одного или нескольких нуклеотидов, не кратных 3

ДЕЛЕЦИЯ

Без сдвига «рамки считывания»

Выпадение фрагмента ДНК из 3 нуклеотидов или с числом нуклеотидов, кратным 3

Происходит укорочение белка на одну или несколько аминокислбт

Со сдвигом «рамки считывания»

Выпадение одного или нескольких нуклеотидов, не кратных 3

Синтезируется пептид со «случайной» последовательностью аминокислот, так как изменяется смысл всех кодонов, следующих за местом мутации

Если рассматривать связь между размножением клеток и их созреванием, то все гены соматических клеток можно разделить на три большие группы:

Гены, управляющие размножением, или аутосинтетические гены (АС-гены);

Гены, регулирующие специфическую активность клеток (движение, выделение, раздражимость, переваривание инородных тел), или гетеросинтетические гены (ГС-гены);

Гены, несущие информацию для самосохранения (СС-гены), например гены, регулирующие дыхание клетки.

Эти названия указывают, что обмен веществ клеток АС-типа направлен только на воспроизведение себе подобных, а специализированная активность ГС-клеток направлена на поддержание всего организма. В молодых клетках прежде всего проявляется активность АС- и СС-генов, а ГС-гены находятся в “дремлющем” состоянии. Созревание всегда определяется каким-либо индуктором (фактором). В ходе дифференцировки понемногу активируются ГС-гены и начинается синтез специализированных белков. В клетках средней степени зрелости еще активны АС-гены и уже проявляется активность ГС-генов. Иными словами, для одновременного размножения и роста клеток необходима активность специфических веществ. В то же время в работу включается новый регулирующий ген (регулятор), который определяет синтез внутриклеточного ингибитора. Этот ингибитор связывается с АС-генами, блокируя их. Постепенно размножение, регулируемое АС-генами, прекращается, и зрелые тупиковые клетки более не способны к делению.

Соматические мутации - это изменения наследственного характера в соматических клетках, возникающих на разных этапах развития особи. Они часто не передаются по наследству, а остаются, пока живет организм потерпевший мутационное воздействие. В этом случае они будут наследоваться только в определенном клоне клеток, который произошел от мутантной клетки. Известно, что мутации генов соматических клеток в некоторых случаях могут стать причиной возникновения рака. Мутации, возникающие в соматических тканях, получили название соматических мутаций. Соматические клетки составляют популяцию, образованную при бесполом размножении (делении) клеток. Соматические мутации обуславливают генотипическое разнообразие тканей, часто не передаются по наследству и ограниченные тем индивидуумом, в которого они возникли. Соматические мутации возникают в диплоидных клетках, поэтому проявляются только при доминантных генах или при рецессивных, но в гомозиготном состоянии. Чем раньше в эмбриогенезе человека возникла мутация, тем больший участок соматических клеток отклоняется от нормы. Злокачественный рост вызывается канцерогенами, среди которых наиболее негативные - проникающая радиация и активные химические соединения (вещества), и хотя соматические мутации не наследуются, они снижают репродуктивные возможности организма, в котором возникли.

Канцерогенез - это механизм реализации внешних и внутренних факторов, которые служат причиной трансформации нормальной клетки в раковую, оказывают содействие росту и распространению злокачественного новообразования. Канцерогенез содержит в себе две разных группы процессов: повреждения и репарация этих повреждений (патогенные и саногенные). Эти процессы можно разместить схематично на трех уровнях- клетка, орган, организм, понимая, что от самого начала все процессы взаимосвязанные, а не последовательные. Процесс развития злокачественной опухоли, начатое разными факторами, в принципе подобный и потому с некоторым обобщением можно говорить про монопатогенетичнисть рака.

Механизм канцерогенеза на клеточному равные многоступенчатый, то есть основной фазы канцерогенеза (инициация, промоция) имеют еще "подфазы", которые зависят от качественных характеристик самых канцерогенов и от особенностей отдельных клеток, в частности фаз их клеточного цикла. Механизмы химического и физического канцерогенеза как основных инициаторов рака можно описать в упрощенной, схематизированной форме, выделяя только основные компоненты. Считается, что пороговых (допустимых) концентраций как химических, так и лучевых канцерогенов нет и определить их невозможно. Причиной этого есть наличие огромного количества канцерогенов в окружающей среде и потребность учитывать их синергическое действие.

Все канцерогенные вещества по происхождению могут быть разделены на две большие группы - экзогенные и эндогенные. Экзогенные канцерогены. К экзогенным относят канцерогенные вещества, находящиеся во внешней среде. Появление опухолей у лиц определенных профессий отмечали еще в XVIII веке. В настоящее время установлено, что самые различные химические вещества из разных классов соединений - углеводородов, аминоазосоединений, аминов, флюоренов и др. - могут вызывать опухоли. Учение об эндогенных канцерогенах получило экспериментальные доказательства в работах Л. М. Шабада и соавт. по обнаружению канцерогенной активности в бензольных экстрактах из печени умерших от рака людей. Это учение обогатилось конкретным содержанием в связи с обнаружением канцерогенной активности у ароматических производных триптофана, метоксииндолов, метаболитов тирозина и, соответственно, обнаружением извращенного обмена ароматических аминокислот у больных разными вариантами опухолей.

Тело живого существа состоит из органов (печень, ноги, глаза и т. д.).

Органы состоят из тканей: кости, мышцы, нервы. Ткани состоят из клеток. Клетки содержат ядра. Ядра содержат хромосомы. Хромосомы несут гены. Мутации - это изменения в хромосомах и генах.

Клетку и ядро можно увидеть в микроскоп, но хромосомы видны не всегда. Они становятся видимыми только на некоторых стадиях жизни клетки, а именно, когда клетка делится и образует две дочерние клетки. В это время хромосомы представляют собой палочковидные или точкообразные структуры, окрашивающиеся на тонких срезах тканей определенными красителями легче, чем остальные части клетки. Гены слишком малы, чтобы их можно было увидеть даже в очень мощный микроскоп, но об их существовании можно судить на основании скрещиваний, так же как о существовании атомов можно судить на основании химических опытов. Гены расположены линейно вдоль хромосом. У некоторых, особенно больших, хромосом можно заметить, что они состоят из более мелких частей, так что они имеют вид как бы нитки бус или ленты с поперечными полосами. Эти бусинки и полосы слишком велики, чтобы представлять собой сами гены, но они отмечают положение генов в хромосомах.

Для каждого вида характерно определенное число хромосом в ядре. Человек имеет 46, мышь 40, конские бобы 12, кукуруза 20 хромосом. Каждая хромосома несет сотни или тысячи генов. Было вычислено, что хромосомы клетки человека несут не менее 40 000 генов, а быть может, и в два раза больше. Это громадное число, но оно не кажется таким уж большим, если представить себе, что гены ответственны за все, что является у нас врожденным и наследственным Гены определяют, принадлежим ли мы к группе крови А или 0, родились ли с нормальным зрением или страдаем одним из многих типов наследственной слепоты, имеем ли мы карие, светло-карие или голубые глаза, толстеем ли мы при обильном питании или остаемся худыми, превращает ли нас музыкальное образование в виртуозов или мы продолжаем оставаться неспособными отличить один звук от другого, и так с тысячами других особенностей, которые все вместе составляют наше физическое и психическое существо.

Перед делением клетки каждая хромосома всегда образует свою точную копию, несущую те же гены, расположенные в том же порядке. В итоге, когда из одной клетки возникают две, старые хромосомы отделяются от вновь образовавшихся их двойников и обе дочерние клетки получают совершенно одинаковые число и тип хромосом и генов.

Человеческое тело развивается из одной клетки - оплодотворенной яйцеклетки, содержащей 46 хромосом. Яйцеклетка делится и образует две клетки, которые вновь делятся, образуя четыре клетки, и т. д. до тех пор, пока не образуется все тело с его миллиардами клеток. Перед каждым клеточным делением хромосомы и гены удваиваются. Таким образом, каждая клетка всегда содержит те же 46 хромосом, несущих те же гены.

Процесс, при помощи которого происходит удвоение хромосом и генов, чрезвычайно точен. Он приводит к появлению миллионов и миллиардов клеток с совершенно одинаковыми генами. Однако иногда, быть может один раз на миллион, что-то в этом процессе нарушается. Какой-нибудь ген претерпевает химическое изменение, или новый ген оказывается не абсолютно подобным старому, или же изменяется порядок генов в хромосоме. Этот процесс изменения в гене или хромосоме называется мутацией. Ее результат, т. е. сам измененный ген или хромосому, также часто именуют мутацией, однако для того чтобы избежать путаницы, лучше говорить о мутировавшем гене или перестроенной хромосоме, а термин «мутация» сохранить для вызвавшего их появление процесса. Индивид, проявляющий действие мутировавшего гена или перестроенной хромосомы, носит название мутанта.

Когда хромосома, в которой произошла мутация, удваивается при подготовке к следующему делению, она так же точно воспроизводит копию мутировавшего гена или нового порядка генов, как и неизменных участков. Таким путем мутировавший ген наследуется и воспроизводится совершенно аналогично тому, как наследуется исходный ген, из которого он произошел. Огромное разнообразие генов, имеющихся у каждого существующего вида организмов, есть результат мутаций, многие из которых произошли миллионы лет назад.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

mutation) - изменение количества или структуры ДНК данного организма. При точечной мутации (point mutation) (или генной мутации (gene mutation)) такому изменению подвергается какой-либо один ген; при хромосомной мутации (chromosome mutation) изменяется структура или количество хромосом. Все виды мутаций являются достаточно редким явлением и могут возникать самопроизвольно или под действием каких-либо внешних агентов (мутагенов). Если мутация возникает в развивающихся половых клетках (гаметах), то она может передаваться по наследству. Мутации в каких-либо других клетках (соматические мутации (somatic mutations)) по наследству обычно не передаются.

МУТАЦИЯ

Скачкообразное изменение генетического материала, вызванное факторами, отличными от нормальных Менделевских рекомбинаций. Мутации становятся частью генетического материала (то есть они генотипичны), хотя их влияние может не проявляться в фенотипе отдельного организма. Большинство мутаций затрагивают отдельные гены, но встречаются также и глобальные изменения хромосом, затрагивающие многие гены. Мутация может также происходить в теле клетки (так называемая соматическая мутация), затем она передается путем митоза этой клетки. С точки зрения адаптивной ценности мутации для отдельного организма, результаты очень случайны; их роль в эволюции опосредована процессом естественного отбора. Вообще говоря, большие (макро) мутации вредны для организма, и, следовательно, они не передаются; малые (микро) мутации, согласно стандартной точке зрения, являются самой "сутью" эволюции.

Мутация

внезапные естественные или искусственно вызванные изменения носителей наследственной информации организма, не связанные с процессом нормального перераспределения (рекомбинации) генов. Способность к М. присуща всем растительным и животным организмам и обусловливает одну из двух основных форм наследственной изменчивости - мутационную изменчивость. Различают три типа мутаций: генные, хромосомные и геномные.

Мутация

лат. mutatio - изменение, перемена) – скачкообразное и стойкое изменение генетического материала, вызванное факторами, отличными от считающихся нормальными Менделевских рекомбинаций генов. Различаются: 1. гаметические мутации (возникающие в генеративных, половых клетках); 2. соматические мутации (возникающие в соматических клетках тела). В зависимости от характера изменений генетического аппарата мутации делятся далее на: 3. геномные мутации (это, например, диплоидия, то есть удвоение генома клетки); 4. хромосомные мутации (например, трисомия, то есть появление какой-то одной дополнительной к нормальным двум хромосомы); 5. генные мутации (например, изменение структуры одного какого-то гена, нескольких генов одновременно); 6. цитоплазматическими называют мутации генов, локализованных вне клеточного ядра. Большинство известных мутаций затрагивает отдельные гены, реже встречаются другие мутации. Роль мутаций в эволюции опосредована процессом естественного отбора. Подавляющее большинство мутаций носит деструктивный, нарушающий жизнеспособность и препятствующий эволюции биологических видов характер. См. Дарвинизм.