Химическая эволюция в истории земли кратко. Химическая эволюция. Значение воды для возникновения и сохранения жизни

  • 25.02.2024

Теория химической эволюции или как зарождалась жизнь

Теория химической эволюции - современная теория про-исхождения жизни - опирается на идею самозарожде-ния. В основе ее лежит не внезапное возникновение живых существ на Земле, а образование хи-мических соединений и систем, которые составляют живую материю. Она рассматривает химию древнейшей Земли, прежде всего химические реакции, протекавшие в прими-тивной атмосфере и в поверхностном слое воды, где, по всей вероятности, концентрировались легкие элементы, составля-ющие основу живой материи, и поглощалось огромное количество солнечной энергии. Эта теория пытается от-ветить на вопрос: каким образом в ту далекую эпоху могли самопроизвольно возникнуть и сформироваться в живую систему органические соединения?

Общий подход к химической эволюции первым сфор-мулировал советский биохимик А. И. Опарин (1894-1980). В 1924 г. в СССР была опубликована его небольшая книга, посвященная этому вопросу; в 1936 г. вышло в свет ее новое, дополненное издание (в 1938 г. она была переведена на английский язык). Опарин обратил внимание на то, что современные условия на поверхности Земли препятствуют синтезу большого количества органических соединений, по-скольку свободный кислород, имеющийся в избытке в ат-мосфере, окисляет углеродные соединения до диоксида угле-рода (углекислого газа, СО 2). Кроме того, он отмечал, что в наше время любое органическое вещество, “брошенное на произвол” на земле, используется живыми организмами (подобную мысль высказывал еще Чарлз Дарвин). Однако, утверждал Опарин, на первичной Земле господствовали иные условия. Можно полагать, что в земной атмосфере того времени отсутствовал кислород, но в изобилии имелись водород и газы, содержащие водород, такие, как метан (СН 4) и аммиак (NН 3). (Подобную атмосферу, богатую водородом и бедную кислородом, называют восстанови-тельной в отличие от современной, окислительной, атмос-феры, богатой кислородом и бедной водородом.) По мне-нию Опарина, такие условия создавали прекрасные воз-можности для самопроизвольного синтеза органических сое-динений.

Обосновывая свою идею о восстановительном характере примитивной атмосферы Земли, Опарин выдвигал следую-щие аргументы:

1. Водород в изобилии присутствует в звездах

2. Углерод обнаруживается в спектрах комет и холодных звезд в составе радикалов СН и CN, а окисленный углерод проявляется редко.

3. Углеводороды, т.е. соединения углерода и водорода, встречаются в метеоритах.

4. Атмосферы Юпитера и Сатурна чрезвычайно богаты метаном и аммиаком.

Как указывал Опарин, эти четыре пункта свидетельству-ют о том, что Вселенная в целом находится в восстано-вительном состоянии. Следовательно, на первобытной Земле углерод и азот должны были находиться в таком же со-стоянии.

5. В вулканических газах содержится аммиак. Это, считал Опарин, говорит о том, что азот присутствовал в первичной атмосфере в виде аммиака.

6. Кислород, содержащийся в современной атмосфере, вырабатывается зелеными растениями в процессе фотосин-теза, и, следовательно, по своему происхождению это био-логический продукт.

На основании этих рассуждений Опарин пришел к заклю-чению, что углерод на примитивной Земле впервые появился в виде углеводородов, а азот-в виде аммиака. Далее он высказал предположение, что в ходе известных ныне хи-мических реакций на поверхности безжизненной Земли воз-никали сложные органические соединения, которые по про-шествии довольно продолжительного периода времени, по-видимому, и дали начало первым живым существам. Первые организмы, вероятно, представляли собой очень простые системы, способные лишь к репликации (делению) за счет органической среды, из которой они образовались. Выражаясь современным языком, они были “гетеротрофами”, т. е. зависели от окружающей среды, которая снабжала их органическим питанием. На противоположном конце этой шкалы находятся “автотрофы”-например, такие орга-низмы, как зеленые растения, которые сами синтезируют все необходимые органические вещества из диоксида углерода, неорганического азота и воды. Согласно теории Опарина, автотрофы появились только после того, как гетеротрофы истощили запас органических соединений в примитивном океане.

Дж. Б. С. Холдейн (1892-1964) выдвинул идею, в неко-тором отношении сходную со взглядами Опарина, которая была изложена в популярном очерке, опубликованном в 1929 г. Он предположил, что органическое вещество, син-тезированное в ходе естественных химических процессов, протекавших на предбиологической Земле, накапливалось в океане, который в конце концов достиг консистенции “го-рячего разбавленного бульона”. По мнению Холдейна, при-митивная атмосфера Земли была анаэробной (свободной от кислорода), однако он не утверждал, что для осуществления синтеза органических соединений требовались восстанови-тельные условия. Таким образом, он допускал, что углерод мог присутствовать в атмосфере в полностью окисленной форме, т. е. в виде диоксида, а не в составе метана или других углеводородов. При этом Холдейн ссылался на результаты экспериментов (не собственных), в которых доказывалась возможность образования сложных органических соедине-ний из смеси диоксида углерода, аммиака и воды под действием ультрафиолетового излучения. Однако в даль-нейшем все попытки повторить эти эксперименты оказались безуспешными.

В 1952 г. Гарольд Юри (1893-1981), занимаясь не собст-венно проблемами происхождения жизни, а эволюцией Сол-нечной системы, самостоятельно пришел к выводу, что атмосфера молодой Земли имела восстановленный характер. Подход Опарина был качественным. Проблема, которую исследовал Юри, была по своему характеру физико-хими-ческой: используя в качестве отправной точки данные о составе первичного облака космической пыли и граничные условия, определяемые известными физическими и хими-ческими свойствами Луны и планет, он ставил целью раз-работать термодинамически приемлемую историю всей Солнечной системы в целом. Юри, в частности, показал, что к завершению процесса формирования Земля имела сильно восстановленную атмосферу, так как ее основными состав-ляющими были водород и полностью восстановленные фор-мы углерода, азота и кислорода: метан, аммиак и пары воды. Гравитационное поле Земли не могло удержать легкий водород-и он постепенно улетучился в космическое про-странство. Вторичным следствием потери свободного во-дорода было постепенное окисление метана до диоксида углерода, а аммиака-до газообразного азота, которые через определенное время превратили атмосферу из восстанови-тельной в окислительную. Юри предполагал, что именно в период улетучивания водорода, когда атмосфера находилась в промежуточном окислительно-восстановительном состоя-нии, на Земле могло образоваться в больших количествах сложное органическое вещество. По его оценкам, океан, по-видимому, представлял тогда собой однопроцентный раствор органических соединений. В результате возникла жизнь в ее самой примитивной форме.

Считается, что Солнечная система образовалась из про-тосолнечной туманности-огромного облака газа и пыли. Возраст Земли, как установлено на основе ряда независимых оценок, близок к 4,5 млрд. лет. Чтобы выяснить состав первичной туманности, разумнее всего исследовать относи-тельное содержание различных химических элементов в со-временной Солнечной системе. По данным исследований основные элементы-водород и гелий-вместе составляют свыше 98% массы Солнца (99,9% его атомного состава) и фактически Солнечной системы в целом. Поскольку Солнце-обычная звезда и к этому типу относится множество звезд в других галактиках, его состав в общем характеризует распростра-ненность элементов в космическом пространстве. Современ-ные представления об эволюции звезд позволяют предпо-ложить, что водород и гелий преобладали и в “молодом” Солнце, каковым оно было 4,5 млрд. лет назад.

Четыре основных элемента Земли относятся к числу девяти наиболее распространенных на Солнце, по своему составу наша планета существенно отличается от космического пространства в целом. (То же самое можно сказать о Меркурии, Венере и Марсе; однако Юпитер, Сатурн, Уран и Нептун в этот список не попадают.) Земля состоит главным образом из железа, кислорода, кремния и магния. Очевиден дефицит всех биологически важных легких элементов (за исключением кислорода) и поразительна согласно теории Опарина-Юри, необходимы для начала химической эволюции. Учитывая дефицит легких элементов и особенно благородных газов, разумно предположить, что изначально Земля сформировалась вообще без атмосферы. За исключением гелия, все благородные газы - неон, аргон, криптон и ксенон - обладают достаточной удельной массой, чтобы их могло удержать земное тяготение. Криптон и ксенон, например, тяжелее железа. Поскольку эти элементы образуют очень мало соединений, они, по всей видимости, существовали в примитивной атмосфере Земли в виде газов и не могли улетучиться, когда планета достигла наконец своих нынешних размеров. Но поскольку на Земле их со-держится в миллионы раз меньше, чем на Солнце, естест-венно допустить, что наша планета никогда не имела ат-мосферы, по составу близкой солнечной. Земля образовалась из твердых материалов, которые содержали лишь небольшое количество поглощенного или адсорбированного газа, так что никакой атмосферы сначала не было. Элементы, вхо-дящие в состав современной атмосферы, по-видимому, поя-вились на первобытной Земле в виде твердых химических соединений; впоследствии под действием тепла, возникаю-щего при радиоактивном распаде или выделении грави-тационной энергии, сопровождающем аккрецию Земли, эти соединения разлагались с образованием газов. В процессе вулканической деятельности эти газы вырывались из земных недр, образуя примитивную атмосферу.

Высокое содержание в современной атмосфере аргона (около 1%) не противоречит предположению, что благо-родные газы первоначально отсутствовали в атмосфере. Изотоп аргона, распространенный в космическом простран-стве, имеет атомную массу 36, тогда как атомная масса аргона, образовавшегося в земной коре при радиоактивном распаде калия, равна 40. Аномально высокое содержание на Земле кислорода (по сравнению с другими легкими эле-ментами) объясняется тем, что этот элемент способен сое-диняться с множеством других элементов, образуя такие очень стабильные твердые соединения, как силикаты и кар-бонаты, которые входят в состав горных пород.

Предположения Юри о восстановительном характере первобытной атмосферы основывались на высоком содер-жании на Земле железа (35% общей массы). Он считал, что железо, из которого ныне состоит ядро Земли, первона-чально было распределено более или менее равномерно по всему ее объему. При разогреве Земли железо расплавилось и собралось в ее центре. Однако, прежде чем это произошло, железо, содержащееся в том слое планеты, который сейчас называется верхней мантией Земли, взаимодействовало с водой (она присутствовала на примитивной Земле в виде гидратированных минералов, похожих на те, что обнару-жены в некоторых метеоритах); в результате в первобытную атмосферу выделились огромные количества водорода.

Исследования, осуществляемые с начала 1950-х годов, поставили под вопрос ряд положений описанного сценария. Некоторые планетологи высказывают сомнения насчет того, что железо, сосредоточенное сейчас в земной коре, могло когда-либо равномерно распределяться по всему объему планеты. Они склоняются к мнению, что аккреция проис-ходила неравномерно и железо конденсировалось из ту-манности раньше других элементов, образующих ныне ман-тию и кору Земли. При неравномерной аккреции содержание свободного водорода в примитивной атмосфере должно было оказаться ниже, чем в случае равномерного процесса. Другие ученые отдают предпочтение аккреции, но проте-кающей таким путем, который не должен приводить к образованию восстановительной атмосферы. Короче говоря, в последние годы были проанализированы различные мо-дели образования Земли, из которых одни в большей, другие в меньшей степени согласуются с представлениями о вос-становительном характере ранней атмосферы.

Попытки восстановить события, происходившие на заре формирования Солнечной системы, неизбежно связаны со множеством неопределенностей. Промежуток времени меж-ду возникновением Земли и образованием древнейших по-род, поддающихся геологической датировке, в течение ко-торого протекали химические реакции, приведшие к появ-лению жизни, составляет 700 млн. лет. Лабораторные опыты показали, что для синтеза компонентов генетической сис-темы необходима среда восстановительного характера; поэ-тому можно сказать, что раз жизнь на Земле возникла, то это может означать следующее: либо примитивная атмосфера имела восстановительный характер, либо органические сое-динения, необходимые для зарождения жизни, откуда-то принесены на Землю. Поскольку даже сегодня метеориты приносят на Землю разнообразные органические вещества, последняя возможность не выглядит абсолютно фантасти-ческой. Однако метеориты, по-видимому, содержат далеко не все вещества, необходимые для построения генетической системы. Хотя вещества метеоритного происхождения, вероятно, внесли существенный вклад в общий фонд органи-ческих соединений на примитивной Земле, в настоящее время кажется наиболее правдоподобным, что условия на самой Земле имели восстановительный характер в такой степени, что стало возможным образование органического вещества, приведшее к возникновению жизни.

Современные биологи показали, что жизнь-это хими-ческий феномен, отличающийся от прочих химических про-цессов проявлением генетических свойств. Во всех известных живых системах носителями этих свойств служат нуклеино-вые кислоты и белки. Сходство нуклеиновых кислот, белков и работающих на их основе генетических механизмов у организмов самых различных видов практически не оставля-ет сомнений в том, что все живые существа, ныне обитающие на Земле, связаны эволюционной цепью, которая соединяет их также с существовавшими в прошлом и вымершими видами. Подобная эволюция - естественный и неизбежный результат работы генетических систем. Таким образом, несмотря на бесконечное разнообразие, все живые существа на нашей планете принадлежат к одной семье. На Земле фактически существует лишь одна форма жизни, которая могла возникнуть только однократно.

Основным элементом земной биохимии является угле-род. Химические свойства этого элемента делают его особен-но подходящим для образования такого типа больших ин-формационно богатых молекул, которые необходимы для построения генетических систем с практически неограничен-ными эволюционными возможностями. Космос также очень богат углеродом, и целый ряд данных (результаты лабора-торных экспериментов, анализов метеоритов и спектроско-пии межзвездного пространства) свидетельствует, что обра-зование органических соединений, подобных тем, которые входят в состав живой материи, достаточно легко и в широких масштабах происходит во Вселенной. Поэтому вероятно, что если жизнь существует в каком-то ином уголке Вселенной, то она также основана на химии углерода.

Биохимические процессы, основанные на химии углерода, могут протекать лишь при сочетании на планете определен-ных условий температуры и давления, а также наличия подходящего источника энергии, атмосферы и растворителя. Хотя в земной биохимии роль растворителя играет вода, возможно, хотя и не обязательно, что в биохимических процессах, происходящих на иных планетах, участвуют дру-гие растворители.

Критерии возможности зарождения жизни

1.Температура и давление

Если предположение о том, что жизнь должна быть основана на химии углерода, правильно, то можно точно установить предельные условия для любой среды, способной поддерживать жизнь. Прежде всего температура не должна превышать предела стабильности органических молекул. Определить предельную температуру нелегко, но не требуется точных цифр. Поскольку температурные эффекты и величина давления взаимозависимы, их следует рассматривать в совокупности. Приняв давление равным примерно 1 атм (как на поверхности Земли), можно оценить верхний температурный предел жизни, учитывая, что многие небольшие молекулы, из которых построена генетическая система, например аминокислоты, быстро разрушаются при температуре 200-300°С. Исходя из этого, можно заключить, что области с температурой выше 250°С необитаемы. (Из этого, однако, не следует, что жизнь определяется только аминокислотами; мы выбрали их лишь в качестве типичных представителей малых органических молекул.) Реальный температурный предел жизни почти наверняка должен быть ниже указанного, поскольку большие молекулы со сложной трехмерной структурой, в частности белки, построенные из аминокислот, как правило, более чувствительны к нагрева-нию, чем небольшие молекулы. Для жизни на поверхности Земли верхний температурный предел близок к 100°С, и некоторые виды бактерий при этих условиях могут выживать в горячих источниках. Однако подавляющее большинство организмов при такой температуре гибнет.

Может показаться странным, что верхний температурный предел жизни близок к точке кипения воды. Не обусловлено ли это совпадение именно тем обстоятельством, что жидкая вода не может существовать при температуре выше точки своего кипения (100°С на земной поверхности), а не какими-то особыми свойствами самой живой материи?

Много лет назад Томас Д. Брок, специалист по термо-фильным бактериям, высказал предположение, что жизнь может быть обнаружена везде, где существует жидкая вода, независимо от ее температуры. Чтобы поднять точку кипе-ния воды, нужно увеличить давление, как это происходит, например, в герметической кастрюле-скороварке. Усиленный подогрев заставляет воду кипеть быстрее, не меняя ее темпе-ратуры. Естественные условия, в которых жидкая вода су-ществует при температуре выше ее обычной точки кипения, обнаружены в районах подводной геотермальной активнос-ти, где перегретая вода изливается из земных недр под совместным действием атмосферного давления и давления слоя океанской воды. В 1982 г. К. О. Стеттер обнаружил на глубине до 10 м в зоне геотермальной активности бактерии, для которых оптимальная температура развития составляла 105°С. Так как давление под водой на глубине 10 м равняется 1 атм, общее давление на этой глубине достигало 2 атм. Температура кипения воды при таком давлении равна 121°С.

Действительно, измерения показали, что температура воды в этом месте составляла 103°С. Следовательно, жизнь возмож-на и при температурах выше нормальной точки кипения воды.

Очевидно, бактерии, способные существовать при темпе-ратурах около 100°С, обладают “секретом”, которого лише-ны обычные организмы. Поскольку эти термофильные фор-мы при низких температурах растут плохо либо вообще не растут, справедливо считать, что и у обычных бактерий есть собственный “секрет”. Ключевым свойством, определяю-щим возможность выживания при высоких температурах, является способность производить термостабильные клеточ-ные компоненты, особенно белки, нуклеиновые кислоты и клеточные мембраны. У белков обычных организмов при температурах около 60°С происходят быстрые и необрати-мые изменения структуры, или денатурация. В качестве примера можно привести свертывание при варке альбумина куриного яйца (яичного “белка”). Белки бактерий, обита-ющих в горячих источниках, не испытывают таких измене-ний до температуры 90°С. Нуклеиновые кислоты также подвержены тепловой денатурации. Молекула ДНК при этом разделяется на две составляющие ее нити. Обычно это происходит в интервале температур 85-100°С в зависимости от соотношения нуклеотидов в молекуле ДНК.

При денатурации разрушается трехмерная структура бел-ков (уникальная для каждого белка), которая необходима для выполнения таких его функций, как катализ. Эта струк-тура поддерживается целым набором слабых химических связей, в результате действия которых линейная последова-тельность аминокислот, формирующая первичную структу-ру белковой молекулы, укладывается в особую, характерную для данного белка конформацию. Поддерживающие трех-мерную структуру связи образуются между аминокислота-ми, расположенными в различных частях белковой молеку-лы. Мутации гена, в котором заложена информация о последовательности аминокислот, характерной для опреде-ленного белка, могут привести к изменению в составе амино-кислот, что в свою очередь часто сказывается на его термо-стабильности. Это явление открывает возможности для эволюции термостабильных белков. Структура молекул, обеспе-чивающая термостабильность нуклеиновых кислот и клеточ-ных мембран бактерий, обитающих в горячих источниках, по-видимому, также генетически обусловлена.

Поскольку повышение давления препятствует кипению воды при нормальной точке кипения, оно может предотвра-тить и некоторые повреждения биологических молекул, свя-занные с воздействиями высокой температуры. Например, давление в несколько сотен атмосфер подавляет тепловую денатурацию белков. Это объясняется тем, что денатурация вызывает раскручивание спиральной структуры белковой молекулы, сопровождающееся увеличением объема. Препят-ствуя увеличению объема, давление предотвращает денату-рацию. При гораздо более высоких величинах давления, 5000 атм и более, оно само становится причиной денатурации. Механизм этого явления, которое предполагает компрес-сионное разрушение белковой молекулы, пока не ясен. Воз-действие очень высокого давления приводит также к повы-шению термостабильности малых молекул, поскольку высо-кое давление препятствует увеличению объема, обусловлен-ному в этом случае разрывами химических связей. Напри-мер, при атмосферном давлении мочевина быстро разруша-ется при температуре 130°С, но стабильна, по крайней мере в течение часа, при 200°С и давлении 29 тыс. атм.

Молекулы, находящиеся в растворе, ведут себя совершен-но иначе. Взаимодействуя с растворителем, они часто распа-даются при высокой температуре. Общее название таких реакций - сольватация; если растворителем служит вода, то реакция называется гидролизом.

Гидролиз-это основной процесс, вследствие которого в природе разрушаются белки, нуклеиновые кислоты и многие другие сложные биологические молекулы. Гидролиз проис-ходит, например, в процессе пищеварения у животных, но он осуществляется и вне живых систем, самопроизвольно, осо-бенно при высоких температурах. Электрические поля, воз-никающие при сольволитических реакциях, приводят к уменьшению объема раствора путем электрострикции, т.е. связывания соседних молекул растворителя. Поэтому сле-дует ожидать, что высокое давление должно ускорять про-цесс сольволиза, и опыты подтверждают это.

Поскольку мы полагаем, что жизненно важные процессы могут протекать только в растворах, отсюда следует, что высокое давление не может поднять верхний температурный предел жизни, по крайней мере в таких полярных раствори-телях, как вода и аммиак. Температура около 100°С-вероят-но, закономерный предел. Как мы увидим, это исключает из рассмотрения в качестве возможных мест обитания многие планеты Солнечной системы.

2. Атмосфера

Следующее условие, необходимое для обитаемости пла-неты, - наличие атмосферы. Достаточно простые соединения легких элементов, которые, по нашим предположениям, составляют основы живой материи, как правило, летучи, т. е. в широком интервале температур находятся в газообразном состоянии. По-видимому, такие соединения обязательно вы-рабатываются в процессах обмена веществ у живых организ-мов, а также при тепловых и фотохимических воздействиях на мертвые организмы, которые сопровождаются выделе-нием газов в атмосферу. Эти газы, наиболее простыми примерами которых на Земле являются диоксид углерода (углекислый газ), пары воды и кислород, в конце концов включаются в кругооборот веществ, который происходит в живой природе. Если бы земное тяготение не могло их удерживать, то они улетучились бы в космическое простран-ство, наша планета со временем исчерпала свои “запасы” легких элементов и жизнь на ней прекратилась бы. Таким образом, если бы на каком-то космическом теле, гравита-ционное поле которого недостаточно сильно, чтобы удержи-вать атмосферу, возникла жизнь, она не могла бы долго существовать.

Высказывалось предположение, что жизнь может сущест-вовать под поверхностью таких небесных тел, как Луна, которые имеют либо очень разреженную атмосферу, либо вообще лишены ее. Подобное предположение строится на том, что газы могут быть захвачены подповерхностным слоем, который и становится естественной средой обитания живых организмов. Но поскольку любая среда обитания, возникшая под поверхностью планеты, лишена основного биологически важного источника энергии-Солнца, такое предположение лишь подменяет одну проблему другой. Жизнь нуждается в постоянном притоке как вещества, так и энергии, но если вещество участвует в кругообороте (этим обусловлена необходимость атмосферы), то энергия, соглас-но фундаментальным законам термодинамики, ведет себя иначе. Биосфера способна функционировать, покуда снабжа-ется энергией, хотя различные ее источники не равноценны. Например, Солнечная система очень богата тепловой энер-гией - тепло вырабатывается в недрах многих планет, вклю-чая Землю. Однако мы не знаем организмов, которые были бы способны использовать его как источник энергии для своих жизненных процессов. Чтобы использовать теплоту в качестве источника энергии, организм, вероятно, должен функционировать подобно тепловой машине, т. е. переносить теплоту из области высокой температуры (например, от цилиндра бензинового двигателя) в область низкой темпера-туры (к радиатору). При таком процессе часть перенесенной теплоты переходит в работу. Но чтобы к. п. д. таких тепло-вых машин был достаточно высоким, требуется высокая температура “нагревателя”, а это немедленно создает огром-ные трудности для живых систем, так как порождает мно-жество дополнительных проблем.

Ни одной из этих проблем не создает солнечный свет. Солнце - постоянный, фактически неисчерпаемый источник энергии, которая легко используется в химических процессах при любой температуре. Жизнь на нашей планете целиком зависит от солнечной энергии, поэтому естественно предпо-ложить, что нигде в другом месте Солнечной системы жизнь не могла бы развиваться без прямого или косвенного потреб-ления энергии этого вида.

Не меняет существа дела и тот факт, что некоторые бактерии способны жить в темноте, используя для питания только неорганические вещества, а как единственный источ-ник углерода - его диоксид. Такие организмы, называемые хемолитоавтотрофами (что в буквальном переводе значит: питающие себя неорганическими химическими веществами), получают энергию, необходимую для превращения диоксида углерода в органические вещества за счет окисления водоро-да, серы или других неорганических веществ. Но эти источники энергии в отличие от Солнца истощаются и после использования не могут восстанавливаться без участия сол-нечной энергии. Так, водород, важный источник энергии для некоторых хемолитоавтотрофов, образуется в анаэробных условиях (например, в болотах, на дне озер или в желудочно-кишечном тракте животных) путем разложения под действием бактерий растительного материала, который сам, конечно, образуется в процессе фотосинтеза. Хемолитоавтотрофы используют этот водород для получения из диокси-да углерода метана и веществ, необходимых для жизне-деятельности клетки. Метан поступает в атмосферу, где разлагается под действием солнечного света с образованием водорода и других продуктов. В атмосфере Земли водород содержится в концентрации 0,5 на миллион частей; почти весь он образовался из метана, выделяемого бактериями. Водород и метан выбрасываются в атмосферу также при извержениях вулканов, но в несравненно меньшем количест-ве. Другой существенный источник атмосферного водоро-да-верхние слои атмосферы, где под действием солнечного УФ-излучения пары воды разлагаются с высвобождением атомов водорода, которые улетучиваются в космическое пространство.

Многочисленным популяцим различных животных-рыб, морских моллюсков, мидий, гигантских червей и т. д., кото-рые, как было установлено, и обитают вблизи горячих источников, обнаруженных на глубине 2500 м в Тихом океа-не, иногда приписывают способность существовать незави-симо от солнечной энергии. Известно несколько таких зон: одна рядом с Галапагосским архипелагом, другая - на рас-стоянии примерно 21° к северо-западу, у берегов Мекси-ки. В глубине океана запасы пищи заведомо скудны, и открытие в 1977 г. первой такой популяции немедленно поставило вопрос об источнике их питания. Одна возмож-ность, по-видимому, заключается в использовании органи-ческого вещества, скапливающегося на дне океана,-отбро-сов, образовавшихся в результате биологической активности в поверхностном слое; они переносятся в районы геотермальной активности горизонтальными течениями, возника-ющими вследствие вертикальных выбросов горячей воды. Движение вверх перегретой воды и вызывает образование придонных горизонтальных холодных течений, направлен-ных к месту выброса. Предполагается, что таким путем здесь и скапливаются органические останки.

Другой источник питательных веществ стал известен после того, как выяснилось, что в воде термальных источников содержится сероводород (H 2 S). He исключено, что хемолитоавтотрофные бактерии находятся у начала цепи пита-ния. Как показали дальнейшие исследования, хемолитоавтотрофы действительно являются главным источником орга-нического вещества в экосистеме термальных источников.

Поскольку “топливом” для этих глубоководных сооб-ществ служит образовавшийся в глубинах Земли сероводо-род, их обычно рассматривают как живые системы, способ-ные обходиться без солнечной энергии. Однако это не совсем верно, так как кислород, используемый ими для окисления “топлива”, является продуктом фотохимических превраще-ний. На Земле имеются только два значительных источника свободного кислорода, и оба они связаны с активностью Солнца.

Океан играет важную роль в жизни глубоководной экосистемы, поскольку он создает окружающую среду для организмов из термальных источ-ников, без которой они не могли бы существовать. Океан обеспечивает их не только кислородом, но и всеми нужными питательными веществами, за исключением сероводорода. Он удаляет отходы. И он же позволяет этим организмам переселяться в новые районы, что необходимо для их выжи-вания, поскольку источники недолговечны - согласно оцен-кам, время их жизни не превышает 10 лет. Расстояние между отдельными термальными источниками в одном районе океана составляет 5-10 км.

3. Растворитель

В настоящее время принято считать, что необходимым условием жизни является также наличие растворителя того или иного типа. Многие химические реакции, протекающие в живых системах, без растворителя были бы невозможны. На Земле таким биологическим растворителем служит вода. Она представляет собой главную составляющую живых клеток и одно из самых распространенных на земной поверх-ности соединений. Ввиду того что образующие воду хими-ческие элементы широко распространены в космическом пространстве, вода, несомненно,- одно из наиболее часто встречающихся соединений во Вселенной. Но, несмотря на такое изобилие воды повсюду. Земля - единственная планета в Солнечной системе, имеющая на своей поверхности океан; это важный факт, к которому мы вернемся позже.

Вода обладает рядом особых и неожиданных свойств, благодаря которым она может служить биологическим растворителем - естественной средой обитания живых орга-низмов. Этими свойствами определяется ее главная роль в стабилизации температуры Земли. К числу таких свойств относятся: высокие температуры плавления (таяния) и кипе-ния; высокая теплоемкость; широкий диапазон температур, в пределах которого вода остается в жидком состоянии; боль-шая диэлектрическая постоянная (что очень важно для раст-ворителя); способность расширяться вблизи точки замерза-ния. Всестороннее развитие эти вопросы получили, в част-ности, в трудах Л.Дж. Гендерсона (1878-1942), профессора химии Гарвардского университета.

Современные исследования показали, что столь необыч-ные свойства воды обусловлены способностью ее молекул образовывать водородные связи между собой и с другими молекулами, содержащими атомы кислорода или азота. В действительности жидкая вода состоит из агрегатов, в кото-рых отдельные молекулы соединены вместе водородными связями. По этой причине при обсуждении вопроса о том, какие неводные растворители могли бы использоваться жи-выми системами в других мирах, особое внимание уделяется аммиаку (NН 3), который также образует водородные связи и по многим свойствам сходен с водой. Называются и другие вещества, способные к образованию водородных связей, в частности фтористоводородная кислота (HF) и цианистый водород (HCN). Однако последние два соединения-малове-роятные кандидаты на эту роль. Фтор относится к редким элементам: на один атом фтора в наблюдаемой Вселенной приходится 10000 атомов кислорода, так что трудно пред-ставить на любой планете условия, которые благоприятство-вали бы образованию океана, состоящего из HF, а не из Н 2 О. Что касается цианистого водорода (HCN), составля-ющие его элементы в космическом пространстве встречают-ся в изобилии, но это соединение термодинамически недоста-точно устойчиво. Поэтому маловероятно, чтобы оно могло в больших количествах когда-либо накапливаться на какой-то планете, хотя, как мы говорили раньше, HCN представляет собой важное (хотя и временное) промежуточное звено в предбиологическом синтезе органических веществ.

Аммиак состоит из довольно распространенных элемен-тов и, хотя он менее стабилен, чем вода, все же достаточно устойчив, чтобы его можно было рассматривать как возмож-ный биологический растворитель. При давлении в 1 атм он находится в жидком состоянии в интервале температур 78 — 33°С. Этот интервал (45°) намного уже соответству-ющего интервала для воды (100°С), но он охватывает ту область температурной шкалы, где вода не может функцио-нировать как растворитель. Рассматривая аммиак, Гендер-сон указывал, что это единственное из известных соединений, которое как биологический растворитель приближается по своим свойствам к воде. Но в конце концов ученый отказался от своего утверждения по следующим причинам. Во-первых, аммиак не может накопиться в достаточном количестве на поверхности какой-либо планеты; во-вторых, в отличие от воды он не расширяется при температуре, близкой к точке замерзания (вследствие чего вся его масса может целиком остаться в твердом, замороженном состоянии), и наконец, выбор его как растворителя исключает выгоды от использо-вания кислорода в качестве биологического реагента. Ген-дерсон не высказал определенного мнения о причинах, кото-рые помешали бы аммиаку накапливаться на поверхности планет, но тем не менее он оказался прав. Аммиак разруша-ется УФ-излучением Солнца легче, чем вода, т. е. его молеку-лы расщепляются под воздействием излучения большей длины волны, несущего меньше энергии, которое широко представлено в солнечном спектре. Образующийся в этой реакции водород улетучивается с планет (за исключением самых больших) в космическое пространство, а азот остает-ся. Вода также разрушается в атмосфере под действием солнечного излучения, но только гораздо более коротковол-нового, чем то, которое разрушает аммиак, а выделяющиеся при этом кислород (О 2) и озон (О 3) образуют экран, очень эффективно защищающий Землю от убийственного УФ-из-лучения. Таким образом происходит самоограничение фото-деструкции атмосферных паров воды. В случае аммиака подобное явление не наблюдается.

Эти рассуждения неприменимы к планетам типа Юпите-ра. Поскольку водород в изобилии присутствует в атмосфере этой планеты, являясь ее постоянной составляющей, разумно предполагать наличие там аммиака. Эти предположения подтверждены спектроскопическими исследованиями Юпи-тера и Сатурна. Вряд ли на этих планетах имеется жидкий аммиак, но существование аммиачных облаков, состоящих из замерзших кристаллов, вполне возможно.

Рассматривая вопрос о воде в широком плане, мы не вправе априори утверждать или отрицать, что вода как биологический растворитель может быть заменена другими соединениями. При обсуждении этой проблемы нередко проявляется склонность к ее упрощению, поскольку, как правило, учитываются лишь физические свойства альтерна-тивных растворителей. При этом приуменьшается или сов-сем игнорируется то обстоятельство, которое отмечал еще Гендерсон, а именно: вода служит не только растворителем, но и активным участником биохимических реакций. Элемен-ты, из которых состоит вода, “встраиваются” в вещества живых организмов путем гидролиза или фотосинтеза у зеленых растений (см. реакцию 4). Химическая структура живого вещества, основанного на другом растворителе, как и вся биологическая среда, обязательно должны быть иными. Другими словами, замена растворителя неизбежно влечет за собой чрезвычайно глубокие последствия. Никто всерьез не пытался их себе представить. Подобная попытка вряд ли разумна, ибо она представляет собой ни больше ни меньше, как проект нового мира, а это занятие весьма сомнительное. Пока мы не в состоянии ответить даже на вопрос о возмож-ности жизни без воды, и едва ли что-нибудь узнаем об этом, пока не обнаружим пример безводной жизни.

2014-05-31

Абиогенез и самозарождения. Первыми свои мысли о том, как на Земле появилась жизнь, высказывали еще древние мудрецы. Уже тогда они предполагали, что живые организмы возникли из неорганической материи. В античные времена идея самозарождения (спонтанного зарождения) живых существ из неживых материалов воспринималась как нечто само собой разумеющееся. В Средневековье представления о происхождении жизни получили формы религиозной догмы. Одним из ее постулатов стала идея о возникновении живых существ из земли в процессе гниения под воздействием животворящего духа.

В эпоху Возрождения активно распространилась легенда о гомункулуса — крохотную человечка, которую можно создать из глины, почвы или другой неживой материи с помощью магических заклинаний и обрядов.

Ошибочность идеи о самозарождении жизни документально доказал итальянский врач Франческо Реди (1626-1698). Он провел ряд опытов, которые показали, что мясные мухи, вопреки мнению, что тогда бытовало, развиваются из отложенных самками яиц, а не зарождаются сами по себе в гниющем мясе. Так, Реди брал два куска мяса, раскладывал их в два глиняных горшки, один из которых накрывал дымкой. Через некоторое время в открытом горшке развивались личинки, а в закрытом не было никаких признаков личинок или мух. Поэтому ученый сделал вывод: мухи садятся на гниющий мясо и откладывают в него личинки, в результате чего рождаются новые мухи.

Однако в большинстве биологов вплоть до XIX в. не возникало сомнения, что свойством самозарождения обладают все одноклеточные организмы. Эту идею развенчал только в 1865 выдающийся микробиолог Луи Пастер (1822-1895). К тому времени уже было известно, что после длительного кипячения в закрытой пробкой колбе любой среде, оно остается стерильным до тех пор, пока колба остается невидкоркованою. Однако сторонников идеи самозарождения ни убеждал этот опыт. Они считали, что для самозарождения необходим чистый, а не прогретый воздух. Поэтому на заказ Пастера специально изготовили колбу с изогнутым в виде лебединой шеи горлышком (рис. 197). Прокипяченный в такой колбе питательный бульон не произрастал бактериями так же, как и в колбе, закрытой пробкой. Пастер объяснял это тем, что микроорганизмы, которые проникают в такую колбу вместе с воздухом, оседают на изгибах горлышка. Свои слова он подтвердил, встряхнув колбу так, чтобы бульон обполоскав стенки горлышка. Именно после этого через некоторое время в отваре появились бактерии. Таким образом Л. Пастер доказал, что в среде, лишенной микроорганизмов, невозможно их зарождения даже при идеальных условиях.

Сейчас убежищем идеи самозарождения организмов остается креационизм — религиозно — философская концепция, разнообразие живой природы, человечество, Землю и Вселенную рассматривает как акт божественного творения.

Отрицание идеи возможности спонтанного зарождения организмов в современных условиях не противоречит научным представлениям о том, что жизнь на Земле возникла из неорганической материи миллиарда лет назад в результате химической или, как еще ее называют, предбиологической эволюции. Идея предбиологических развития природы, который привел к образованию жизни, получила название абиогенеза (от греч. А — не, к биос и генезис). Сейчас считается, что эволюция жизни на нашей планете состоит из двух этапов: абиогенеза и биогенеза — собственно биологической эволюции, когда живые организмы происходят только от живых организмов.

Химическая эволюция. Материальная сущность тел живых организмов достаточно проста. Они построены из полимерных органических соединений, основу которых составляют соединения атомов углерода. Процесс жизнедеятельности — это не что иное, как совокупность упорядоченных, вытекающих друг из друга, химических реакций. Мысленно разложив клетку на отдельные структуры и макромолекулы, из которых она построена, а метаболизм организма сначала на биохимические циклы, а затем на отдельные реакции, легко представить логику постепенного усложнения строения химических соединений и реакций, которое могло происходить миллиарды лет назад. В лабораторных условиях, имитирующих условия первобытной Земли, возможно сначала осуществить синтез простейших биогенных соединений, затем из них получить биополимеры, обладают каталитической активностью, а затем — структуры, напоминающие клеточную мембрану. Тем самым можно доказать принципиальную возможность химической эволюции — поступательного процесса появления новых химических соединений, более сложных и высокоорганизованных сравнению с исходными веществами, происходил на Земле перед возникновением жизни.

Основные положения концепции химической эволюции такие.

Жизнь на Земле возникла естественным путем из неорганических веществ с затратой энергии, которая поступала извне.

Возникновение жизни — это процесс появления все новых химических соединений и химических реакций.

Химическая эволюция — процесс, который протекал в течение миллиардов лет в очень специфических условиях под влиянием мощных внешних источников энергии.

Важную роль в химической эволюции сыграл предбиологический отбор, способствовавший возникновению, прежде всего, сложных соединений, у которых способность к обмену веществ сочеталась со способностью к самовоспроизведению.

Ключевым в процессе химической эволюции был фактор самоорганизации, присущий всем сложным системам, к которым относятся и органические молекулы.

А можно в современных условиях на Земле найти предельное состояние между неживым и живым? Оказывается, можно. Это те же вирусы, которые проявляют свойства как живого, так и неживого, хотя, как считает большинство ученых, не имеют никакого отношения к химической эволюции и происхождения жизни. Интереснее находка совершенно нового пограничного состояния между живым и неживым — так называемых нанобактерий. Это очень мелкие шаровидные субстанции, которые по размерам не превышают вирусы. их можно разглядеть только в электронный микроскоп. Большинство ученых считают их биоминералы. Нанобактерии способны к самовоспроизведению в присутствии определенных витаминов. их размножения при этом происходит путем самокопирования. Нанобактерии не содержат ни ДНК, ни PHK, ни каких-либо белков. Химические процессы в этих субстанциях происходят иначе, чем у прокариот, а скорость их роста в тысячи раз меньше, чем у бактерий.

Современные представления об основных этапах абиогенеза. Образование распространенных в живой природе органических соединений вне организма проходит ряд этапов.

1. Синтез органических мономеров: органических кислот, аминокислот, углеводов, азотистых оснований. Для этого на первобытной Земле были все условия: количество воды, метана, аммиака и цианидов, отсутствие кислорода и других окисления нювачив (атмосфера имела восстановительный характер), а также избыток свободной энергии в виде ультрафиолетового излучения, электрических разрядов и вулканической деятельности.

Возможность синтеза аминокислот и других низкомолекулярных органических соединений из химических элементов и неорганических соединений доказана экспериментально. Для этого составляющие атмосферы тогдашней Земли (углекислый газ, метан и аммиак, водяной пар) были помещены в замкнутую колбу и сквозь эту смесь пропущенные электрические разряды (рис. 198). В результате удалось синтезировать ряд сравнительно сложных биогенных соединений: аминокислоты (глицин, аланин, аспарагиновую кислоту), янтарную и молочную кислоты, другие низкомолекулярные органические соединения. Похожие результаты были получены неоднократно, в том числе за использование других источников энергии, других газов, их различного соотношения. Учитывая, что сейчас в межпланетном пространстве найдены десятки простых органических соединений, можно вполне обоснованно предположить, что за миллиарды лет до возникновения жизни концентрация органических соединений на Земле местами могла быть достаточно высокой. Растворенные в воде, они образовывали так называемый «первичный бульон».

2. Синтез органических полимеров, осуществлялся из имеющихся мономеров, стал следующим этапом химической эволюции. Катализаторами могли быть ионы металлов, а матрицей — частицы глины. В результате этого процесса в «первичном бульоне» образовывались различные полипептиды и простейшие липиды (вспомните, из которых двух компонентов построены жиры). Они сочетались друг с другом, образуя сложные многомолекулярных комплексы — коацерваты (от лат. Коацерватус — собран вместе), имевших вид капель с четкими границами (рис. 199). Коацерваты уже были способны поглощать различные вещества, в них происходили различные реакции, в частности полимеризация мономеров, поступали извне. За счет этих реакций капли могли расти — увеличиваться в объеме, а после достижения критической массы размножаться — дробиться на дочерние капли.

Химическая эволюция.
Химическая эволюция: начальные этапы.

Центральные части Солнца и других звезд почти не имеют в своем составе настоящих химических элементов и образованы в основном из плазмы. Плазма - полностью ионизированный газ, состоящий из хаотически движущихся положительно заряженных (атомные ядра) и отрицательно заряженных (электроны) частиц.
Строение вещества звезд определяется степенью ионизации (процентом вещества, находящегося в состоянии плазмы). В центральной части Солнца температура составляет от 3 до 20 млн. градусов. При этой температуре степень ионизации достигает 100%, т.е. все вещества находятся в состоянии плазмы. На глубине, равной 0,1 радиуса Солнца, температура снижается до 400 000* С, а на поверхности Солнца температура падает до 5500* С. При этом степень ионизации снижается до 0,01%, т.е. 99,99% веществ на поверхности Солнца находится в виде атомов, имеющих электронные оболочки.
Спектральными анализами на поверхности Солнца обнаружено около 60 химических элементов, среди которых преобладают водород и гелий. Это объясняется тем, что другие элементы с более высокой атомной массой и более сложной структурой атомного ядра и электронной оболочки не могут долго существовать при высокой температуре. Количество атомов водорода в солнечной атмосфере в 4-5 раз больше количества атомов гелия; количество атомов всех других элементов в 1000 раз меньше количества водорода.
В глубинах Солнца и звезд, в плазме происходит образование сложных ядер из простейших вследствие захвата протонов и нейтронов. Образование ядра гелия из водорода идет в три этапа. Из ядра водорода (протона) и нейтрона образуется ядро тяжелого водорода (дейтерия - D) - дейтрон. При соединении дейтрона с еще одним протоном образуется ядро легкого изотопа гелия - Не|. В результате слияния двух ядер легкого гелия образуется ядро обычного, тяжелого гелия - Не2 и высвобождается два протона.
В ходе термоядерных реакций создаются ядра новых элементов. При соединении трех ядер гелия возникает ядро изотопа углерода.
В результате присоединения к ядру углерода других частиц гелия возникают изотопы кислорода, неона, магния и других элементов. Таким образом, возникновение атомов химических элементов - начальный этап неорганической эволюции. Водород, углерод, кислород, азот, фосфор (так называемые биогенные элементы) широко распространены в космосе и имели большую возможность реагировать между собой с образованием простейших неорганических соединений - следующий этап неорганической эволюции. Этому способствовало наличие энергии в космосе в виде электромагнитного излучения и тепла, испускаемого звездами. Преобладание водорода, кислорода, азота и фосфора в живых системах не случайно: водород - хороший восстановитель, легко образует с кислородом и азотом водородные связи, имеющие большое значение в образовании биологических структур и для процессов жизнедеятельности. Кислород обладает большой окислительной активностью, а для фосфора характерно образование макроэргических связей, в которых запасается энергия при химических реакциях.
Третий этап химической эволюции - образование простейших органических соединений - связан со специфической валентностью углерода - главного носителя органической жизни, его способностью к соединению почти со всеми элементами, к образованию цепей и циклов, с его каталитической активностью и другими свойствами. Простейшие органические молекулы широко распространены в межзвездной среде.

Первый этап химической эволюции на Земле.
Химическая эволюция - это совокупность процессов, протекавших в Космосе и на ранних этапах существования Земли, приведших к возникновению жизни. На первом этапе образовались литосфера, гидросфера, атмосфера. Литосфера возникла вследствие вулканизма. Ежегодно вулканы выбрасывают на поверхность Земли около 1 км. За время существования Земли, при нынешней активности вулканов, было выброшено такое количество лавы, которой достаточно для образования коры Земли.
Гидросфера также создана вулканами: 3 % массы лавы составляет водяной пар. Пар конденсировался. Это привело к появлению осадков и Первичного океана. Атмосфера образовалась при дегазации лав. Вначале Земля имела первичную атмосферу. Но масса юной Земли оказалась недостаточной для удержания газов, и они улетучивались. Земля увеличила свою массу за счет космической пыли и метеоритов: на Землю ежегодно выпадает 107 кг пыли. К тому же Земля, проходя через пылевое облако, могла получать с космической пылью 10" т органического материала. Вторичная атмосфера возникла тоже за счет дегазации лав и состояла из СО, СОз, Нз, НзО, N, МНз. Кислород появился в атмосфере благодаря фотолизу - разложению паров воды в верхних слоях атмосферы солнечными лучами. Позже обогащение атмосферы кислородом шло за счет фотосинтеза. Два с половиной миллиарда лет назад исчезли золотоураносные конгломераты, которые формируются только в отсутствии кислорода. В тот же период появляются красноцветы, образующиеся только при наличии кислорода.

Второй этап химической эволюции на Земле.
На этом этапе происходило образование низкомолекулярных органических соединений (аминокислот, спиртов, углеводов, органических кислот). Жизнь на Земле основана на углеродистых соединениях. Почему именно углерод стал основой жизни? Во-первых, потому, что углерод образует соединения в виде крупных молекулярных цепочек. Во-вторых, углеродистые соединения взаимодействуют медленно. В-третьих, углерод образует сложные соединения с особой структурой, существенной для протекания важнейших жизненных процессов.
Химическая эволюция началась задолго до возникновения Земли - она началась в Космосе. В межзвездном пространстве обнаружено более 50 органических соединений. В Космосе обычен формальдегид, окись углерода, вода, аммиак, цианистый водород. Эти вещества, как показали эксперименты, могут быть предшественниками аминокислот и других органических соединений. Во внеземном пространстве обнаружены углеводороды, альдегиды, эфиры, аминокислоты, нуклеотиды, ароматические соединения. Обнаружено вещество, имеющее в своем составе 18 атомов углерода. Синтез примитивных углеводородов, начавшийся в Космосе, продолжался во время формирования Солнечной системы и Земли.
Предположения о процессах второго этапа химической эволюции имеют экспериментальное подтверждение. В 1850 г. немецкий химик А. Штеккер осуществил химический синтез аминокислот из аммиака, альдегидов, синильной кислоты. В 1861 г. А. М. Бутлеров, нагревая формальдегид в крепком щелочном растворе, получил смесь Сахаров. Д. И. Менделеев получал углеводы, подвергая карбиды действию водяного пара. Студент Чикагского университета С. Л. Миллер в 1953 г. для дипломной работы, выполненной под руководством С. Фокса, собрал специальный аппарат для проверки возможности абиогенетического синтеза органических соединений. В этом герметическом приборе в течение недели по замкнутой схеме циркулировала смесь газов, которые, по общему мнению, наиболее вероятно содержались в ранней атмосфере Земли: СН4, Н, NH. Кипящая вода - источник водяного пара - и холодильник поддерживали циркуляцию газовой смеси. В приборе непрерывно пропускали искры при напряжении 60 тыс. вольт. После этого воду подвергли хроматографическому и химическому анализу. Было обнаружено 6 аминокислот (глицин, аланин, аспаргиновая и глутаминовая кислоты и др.), мочевину, молочную, янтарную, уксусную кислоты. Всего было обнаружено 11 органических кислот.
В том, что абиогенетический синтез органики возможен, убеждает такой факт: одно извержение вулкана в настоящее время сопровождается выбросом до 15 т органического вещества. К тому же Земля, проходя через пылевое облако, могла получать с космической пылью 108 т органического материала. Все это, предположительно, могло создать тот "бульон", о котором писали А. Опарин и Дж. Холдейн.

Начальные этапы биологической эволюции.

Образование первичных клеточных организмов положило начало биологической эволюции. Считается, что отбор коацерватов и пограничный этап химической и биологической эволюции продолжались около 750 млн лет. В конце этого периода появились первые примитивные безъядерные клетки - прокариоты. Первые живые организмы - гетеротрофы - использовали в качестве источника энергии (пищи) органические соединения, растворенные в водах первичного океана. Поскольку в атмосфере Земли не было свободного кислорода, гетеротрофы имели анаэробный (бескислородный) тип обмена веществ, эффективность которого невысока. Увеличение количества гетеротрофов привело к истощению вод первичного океана, где оставалось все меньше готовых органических веществ, которые можно было использовать для питания.
В более выгодном положении оказались организмы, которые развили способность использовать энергию солнечного излучения для синтеза органических веществ из неорганических - фотосинтеза. Таким образом, появился принципиально новый источник питания. Например, современные фотосинтезирующие пурпурные бактерии благодаря солнечному излучению окисляют сероводород до сульфатов. Высвобождающийся в результате реакции окисления водород идет на восстановление диоксида углерода до углеводов с образованием воды. Использование органических соединений в качестве источника (донора) водорода привело к появлению автотрофных организмов (способных синтезировать из неорганических веществ все необходимые для жизни органические вещества).
Следующий шаг эволюции связан с развитием у фотосинтезирующих организмов способности использовать воду в качестве источника водорода для синтеза органических молекул. Усвоение углекислого газа такими организмами сопровождалось выделением кислорода и включением углерода в органические соединения. Так в атмосфере Земли начал накапливаться кислород. Первыми фотосинтезирующими организмами, выделяющими в атмосферу кислород, были цианобактерии (цианеи).
Переход от первичной атмосферы к среде, содержащей кислород, представляет собой важнейшее событие как в эволюции живых существ, так и в преобразовании минералов. Во - пеpвых, кислород, выделяющийся в атмосферу, в верхних ее слоях под действием мощного ультрафиолетового излучения Солнца превращается в активный озон (О3), который способен поглощать большую часть жестких коротковолновых ультрафиолетовых лучей, разрушительно действующих на сложные органические соединения. Во-вторых, в присутствии свободного кислорода возможен кислородный тип обмена веществ, энергетически более выгодный. Образование свободного кислорода вызвало к жизни многочисленные новые формы аэробных живых организмов и более широкое использование ими ресурсов окружающей среды.
В результате взаимополезного симбиоза различных прокариотических (не обладающих оформленным клеточным ядром) клеток возникли ядерные, или эукариотические, организмы (эукариоты). Основой симбиоза была, вероятно, гетеротрофная амебоподобная клетка. Питанием для нее служили более мелкие клетки и, в частности, дышащие кислородом аэробные бактерии, способные функционировать и внутри клетки-хозяина, производя энергию. Те крупные амебовидные клетки, в теле которых аэробные бактерии оставались невредимыми, оказались в более выгодном положении, чем клетки, получавшие энергию анаэробным путем - брожением. В дальнейшем бактерии-симбионты превратились в митохондрии (органеллы клеток, где протекают реакции, обеспечивающие клетки энергией). Когда к поверхности клетки-хозяина прикрепилась вторая группа симбионтов - жгутикоподобных бактерий, сходных с современными спирохетами, подвижность и способность к нахождению пищи такого организма резко возросли. Так возникли примитивные животные клетки - предшественники нынешних жгутиковых простейших.
Образовавшиеся подвижные эукариоты путем симбиоза с фотосинтезирующими (возможно, цианобактериями) организмами дали водоросль, или растение, причем строение пигментного комплекса у фотосинтезирующих анаэробных бактерий сходно с пигментами зеленых растений. Такое сходство указывает на возможность эволюционного преобразования фотосинтезирующего аппарата анаэробных бактерий в аналогичный аппарат зеленых растений.
Изложенную гипотезу о возникновении эукариотических клеток через ряд последовательных симбиозов приняли многие современные ученые, поскольку она хорошо обоснованна. Во-первых, одноклеточные водоросли и сейчас легко вступают в союз с животными - эукариотами; например, в теле инфузории туфельки обитает водоросль хлорелла. Во-вторых, некоторые органоиды клетки - митохондрии и пластиды - по строению ДНК очень похожи на прокариотические клетки-бактерии и цианобактерии.
Возможности эукариот по использованию среды существенно выше, чем у прокариот, поскольку они имеют диплоидный (двойной) набор генов. У прокариот любая мутация сразу проявляется в виде признака. Если мутация полезна, организм продолжает существовать, если вредна - он погибает, т.е. прокариоты непрерывно приспосабливаются к изменениям окружающей среды, но лишены возможности формировать крупные структурные изменения. Появление двойного набора генов у эукариот сделало возможным накопление непроявляющихся фенотипических мутаций и, следовательно, формирование резерва наследственной изменчивости - основы эволюционных преобразований.
Возможности одноклеточных в освоении среды обитания были ограничены, так как дыхание и питание простейших осуществляются через поверхность тела. При увеличении размеров клетки одноклеточного организма его поверхность возрастает по квадратичному закону, а объем - по кубическому, поэтому биологическая мембрана, окружающая клетку, не могла обеспечивать кислородом слишком большой организм. Иной эволюционный путь осуществился позже, около 2,6 млрд лет назад, когда появились многоклеточные организмы, эволюционные возможности которых значительно шире.
Первая гипотеза о происхождении многоклеточных организмов принадлежит Э. Геккелю (вторая половина XIX в.). При ее построении он исходил из исследований эмбрионального развития ланцетника (род животных класса бесчерепных), проведенных А.О. Ковалевским и другими зоологами. Геккель полагал, что начальная стадия развития зародыша (стадия зиготы) соответствует одноклеточным предкам, а стадия развития зародыша многоклеточных животных в процессе бластуляции (заключительной фазе периода дробления яйца) - шарообразной колонии жгутиковых. В дальнейшем, согласно этой гипотезе, произошло впячивание (инвагинация) одной из сторон шарообразной колонии и образовался гипотетический двухслойный организм, названный Геккелем гастреей. Теория Геккеля сыграла важную роль в истории науки, способствуя утверждению монофилетических (т.е. из одного корня) представлений о происхождении многоклеточных.
Основу современных представлений о возникновении многоклеточных организмов составляет гипотеза фагоцителлы И.И. Мечникова. По его представлениям, многоклеточные произошли от колониальных простейших - жгутиковых. Пример такой организации - ныне существующие колониальные жгутиковые типа вольвокс. Среди клеток колонии выделяются движущиеся, снабженные жгутиками, фагоцитирующие добычу и уносящие ее внутрь колонии, и половые, функцией которых является размножение. Так колония превратилась в примитивный, но целостный многоклеточный организм. О справедливости гипотезы фагоцителлы говорит строение примитивного многоклеточного организма - трихоплакса, который по строению соответствует гипотетической фагоцителле и поэтому должен быть выделен в особый тип животных - фагоцителлоподобных, заполняющих брешь между многоклеточными и одноклеточными организмами.
Таким образом, в настоящее время большинство исследователей в области естествознания признает, что возникновение жизни на Земле связано с длительным процессом химической эволюции. Формирование структуры, отграничивающей организм от окружающей среды, - мембраны с присущими ей свойствами способствовало появлению живых организмов и ознаменовало начало биологической эволюции. Как простейшие живые организмы, возникшие около 3 млрд лет назад, так и устроенные более сложно в основе своей структурной организации имеют клетку.

Основные направления биологической эволюции.
В протерозойской эре в морях обитало множество водорослей. Начальные зве
и т.д.................

Химическая эволюция живого. Из водорода, азота и углерода при наличии свободной энергии на Земле должны были возникать сначала простые молекулы: аммиак, метан и подобные соединения. И дальнейшем эти несложные молекулы в первичном океане могли вступать в новые связи между собой и с другими веществами.

С особым успехом, видимо, протекали процессы роста молекул при наличии группы –N=C=N–. Эта группа таит в себе большие химические возможности к росту как за счет присоединения к атому углерода атома кислорода, так и путем реагирования с азотистым основанием.

С определенного этапа химической эволюции участие кислорода в этом процессе стало необходимым. В атмосфере Земли кислород мог накапливаться в результате разложения воды и водяного пара под действием ультрафиолетовых лучей Солнца . Для превращения восстановленной атмосферы первичной Земли в окисленную потребовалось не меньше 1–1,2 млрд лет (рис. 5.1). С накоплением в атмосфере кислорода восстановленные соединения должны были окисляться, а именно: NH 3 –до NO 3 , CH 4 – до CO 2 , H 2 S – до SO 3 . В ряде случаев при окислении CH 4 могли образоваться метиловый спирт, формальдегид, муравьиная кислота и т.д., котopые вместе с дождевой водой попадали в первичный океан. Эти вещества, вступая в реакции с аммиаком и цианистым водородом, могли дать начало аминокислотам и соединениям типа аденина.

Рис. 5.1. Эволюция биосферы и атмосферы (из Ю. Одума, 1975). Левая часть кривой должна быть продолжена, по-видимому, до 2,5 млрд лет.

В ходе таких и аналогичных им реакций воды первичного океана насыщались разнообразными веществами, образуя первичный бульон.

Возможность синтеза аминокислот и других низкомолекулярных органических соединений из неорганических элементов и соединений доказана экспериментально. Так, пропуская электрические разряды или ультрафиолетовое излучение через смесь газов метана и аммиака, при наличии водяного пара удастся получать такие сравнительно сложные соединения, как глицин, аланин, аспарагиновая кислота, γ-аминомасляная, янтарная и молочная кислоты и другие низкомолекулярные органические соединения всех четырех основных классов: аминокислоты, нуклеотиды, сахара и жирные кислоты. Возможность такого синтеза была доказана в многочисленных экспериментах с использованием других соотношений исходных газов и видов источника энергии.

Эксперименты в этом направлении оказались перспективными и для выяснения происхождения других веществ. Осуществлен синтез аденина, гуанина, аденозина, аденозинмонофосфата, аденозиндифосфата и аденозинтрифосфата. Путем реакции полимеризации из простых молекул могли быть образованы и более сложные молекулы – белки, липиды, нуклеиновые кислоты и их производные.

Не останавливаясь на других особенностях начальных стадий химической эволюции, заметим, что одной из наиболее важных ее ступеней следует признать объединение способности к самовоспроизведению полинуклеотидов с каталитической активностью полипептидов. При возникновении жизни необходимо было участие как полинуклеотидов, так и полипептидов. Свойства каждого из них нуждались в дополнении свойствами другого. Каталитические способности молекул РНК (А.С. Спирин), которые, вероятно, сыграли важную роль в ходе предбиологической эволюции, были усилены каталитическими функциями молекул белков. К тому же синтез самих белков путем удлинения пептидной цепочки не имел бы большого успеха без передачи стабильности хранением о нем «информации» в нуклеиновых кислотах. Наибольшие шансы на сохранение имели в ходе предбиологического отбора те комплексы, у которых способность к обмену веществ сочеталась со способностью к самовоспроизведению.

Для этого этапа предбиологической эволюции в качестве элементарного объекта эволюции выделяют фракцию макромолекул полинуклеотидов или полипептидов, а в качестве элементарной эволюционирующей единицы – устойчивый «коллектив» макромолекул (связанных между собой процессами синтеза, катализа и др.).

В дальнейшем усложнении обмена веществ в таких системах существенную роль должны были играть катализаторы (различные органические и неорганические вещества) и пространственно-временное разобщение начальных и конечных продуктов реакции. Вероятно, все это не могли возникнуть до появления мембран. Образование мембранной структуры считается одним из «трудных» этапов предбиологической эволюции. Хотя объединением полинуклеотидов и полипептидов в какой-то степени и была достигнута возможность самосборки системы, однако истинное существо не могло оформиться до возникновения мембранной структуры и ферментов.

Рис. 5.2. Возможные пути формирования: А – мембран при образовании коацерватов в первичном бульоне (из М. Кальвина, 1971); Б – образования митохондрий; В – образования клетки эукариот (по Е. Вольпе, 1981)

Биологические мембраны, как известно, составляют агрегаты белков и липидов, способные разграничить вещества от среды и придать упаковке молекул прочность. Мембраны могли возникнуть или в ходе формирования коацерватов (рис. 5.2), образующихся в воде при соприкосновении двух слабо взаимодействующих полимеров, или при адсорбции полимеров на поверхности глин (см. ниже).

Ранее уже говорилось о том что использование ЭВМ позволило строить и рассчитывать образование и развитие солнечной системы и Земли в частности на различных моделях. Химическая эволюция Земли В процессе эволюции Земли складывались определенные пропорции различных элементов. Земля наиболее массивная среди внутренних планет прошла сложнейший путь химической эволюции. Следует подчеркнуть что геологическая история Земли...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Концепции современного естествознания
Лекция 16. Химическая эволюция Земли

Ранее уже говорилось о том, что использование ЭВМ позволило строить и рассчитывать образование и развитие солнечной системы и Земли в частности на различных моделях.

Наиболее убедительной выглядит модель образования Солнца и планет из единого вращающегося газопылевого комплекса, т.е. в соответствии с ротационными гипотезами. Вспомним, что согласно этим гипотезам в центре вращающейся газовой туманности образовалась протозвезда – Солнце. Центробежные силы в экваториальной области приводили к возникновению неустойчивых потоков газа и пыли. Впоследствии эта часть вещества была оторвана от Солнца, унося с собой избыточный момент количества движения. Так образовался газопылевой диск (кольцо) в экваториальной плоскости Солнца.

Солнце нагревало внутреннюю часть этого кольца, вызывая испарение и “выгоняя” солнечным ветром более легкие элементы в дальние части кольца. Этот процесс занял во времени около 100 млн. лет. В зависимости от расстояния до Солнца разные части туманности остывали с разной скоростью, что привело к различиям в протекании химических процессов. Химическая эволюция планет и Земли в частности также протекала по-разному: сначала конденсировались наиболее тугоплавкие элементы, а затем летучие. Дальнейшая история развития химических соединений рассматривается нами уже в контексте развития Земли.

К началу документа

1. Химическая эволюция Земли

В процессе эволюции Земли складывались определенные пропорции различных элементов. В веществе планет, комет, метеоритов, Солнца присутствуют все элементы периодической системы, что доказывает общность их происхождения, однако количественные соотношения различны. Количество атомов какого-либо химического элемента в различных природных системах принято выражать по отношению к кремнию, поскольку кремний принадлежит к обильным и труднолетучим соединениям.

С ростом порядкового номера распространенность элементов убывает, но не равномерно. Примечательно, что элементы с четным порядковым номером, особенно элементы с массовым числом кратным 4 более распространены . К ним, в частности, относятся He, CO, Ne, Mg, Si, S, Ar, Ca. Дело в том, что этим массовым числам соответствуют устойчивые ядра. Американские космохимики Г. Юри и Г. Зюсс писали по этому поводу следующее: “...распространенность химических элементов и их изотопов определяется ядерными свойствами, и окружающее нас вещество похоже на золу космического ядерного пожара, из которого оно было создано”.

К важнейшим свойствам Земли, определяющим ее происхождение и химическую эволюцию, относится радиоактивность. Все первичные планеты были сильно радиоактивны. Нагреваясь за счет энергии радиоактивного распада, они подвергались химической дифференциации, которая завершилась формированием внутренних металлических ядер у планет земной группы.

Литофильные элементы, т.е. элементы, образующие твердые оболочки планет (Si, O, Al, Fe, Ca, Mg, Na, K) переходили вверх, выделение газов из расплавленного вещества мантий при выплавлении легкоплавких фракций, приводила к базальтовым расплавам, которые также изливались на поверхность планет. Газовые компоненты, вырывающиеся вместе с ними, дали начало первичным атмосферам, которые смогли удержать только сравнительно крупные планеты, к которым относилась и Земля. Схема формирования структуры Земли показана на рис.1.

Земля наиболее массивная среди внутренних планет, прошла сложнейший путь химической эволюции. Его были усвоены и сложные органические соединения, обнаруженные также и в метеоритном веществе. Эти вещества образовались еще на последних стадиях остывания протопланетного облака. Впоследствии на Земле они привели к возникновению жизни.

К началу документа

Геохронология. Русский геохимик А.Е. Ферсман (1883-1945) разделил время существования атомов Земли на три эпохи:

Эпоху звездных условий существования,
- эпоху начала формирования планет,
- эпоху геологического развития.

Для обозначения времен и последовательности образования горных пород Земли в эпоху ее геологического развития примет термин геохронология .

В 1881г.в Болонье на Международном геологическом конгрессе были введены термины эра, эпоха, период, век, время и принята геохронологическая шкала.

Следует подчеркнуть, что геологическая история Земли неотделима от ее биологической эволюции, она совершилась в тесной связи и под влиянием развивающейся жизни. Эти связи отражены и в геохронологии.

По степени изученности геологической и биологической истории Земли, все время ее существования делится на две неравные части:

1. Криптозой (criptos – тайный), эта часть охватывает огромный интервал времени (от 570 до 3800 млн. лет назад). Это период со скрытым развитием органической жизни, включающая архейскую и протерозойскую эры.

2. Фанерозой (греч. рhaneros “явный” + zoe “жизнь”), более поздняя составляющая 570 млн. лет и включающая палеозойскую, мезозойскую и кайнозойскую эры;

Поворотной точкой в истории биологической эволюции Земли явился кембрийский период палеозойской эры. Если докембрийская эпоха была временем единоличного господства одноклеточных организмов, то после-кембрийская стала эпохой многоклеточных форм. В кембрийский период впервые в истории эволюции возникли многоклеточные организмы современного типа, сложились все основные характеристики тех телесных "планов", по которым эти организмы строятся до сих пор, были заложены предпосылки будущего выхода этих организмов из морей на сушу и завоевания ими всей поверхности Земли .

До сих пор представляется загадочным тот факт, что появление новых форм не растянулось на всю кембрийскую эпоху или хотя бы значительную ее часть, а произошло почти одновременно, в течение каких-нибудь трех-пяти миллионов лет. В геологических масштабах времени это совершенно ничтожный срок - он составляет всего одну тысячную от общей длительности эволюци. Этот эволюционный скачок получил название "Кембрийский взрыв ".

К началу документа

2. Понятие самоорганизации в химии.

Вопрос о возникновении органической жизни остается до сих пор одним из самых интересных и сложных вопросов современного естествознания. Ответить на этот вопрос означает объяснить, каким образом природа из минимума химических элементов и соединений создала сложнейшие макромолекулы, а затем высокоорганизованный комплекс биосистем?

Ответ на этот вопрос ищется в настоящее время в особой химической науке – Эволюционной химии. Ее иногда называют также предбиологией – наукой о самоорганизации химических систем.

Под самоорганизацией понимают самопроизвольное повышение упорядоченности уровней сложности материальных динамических, т.е. качественно изменяющихся систем.

Субстратный и функциональный подходы к проблеме самоорганизации предбиологических систем. В рамках эволюционной химии выделяется два подхода к проблеме самоорганизации: субстратный и функциональный. Функциональный подход сосредотачивает внимание на исследовании самих процессов самоорганизации материальных систем, на выявлении законов, которым подчиняются эти процессы. Здесь эволюционные процессы часто рассматриваются с позиций кибернетики. Крайней точкой зрения в этом подходе является утверждение о полном безразличии к материалу эволюционирующих систем.

Субстратный подход состоит в исследовании вещественной основы биологических систем, т.е. элементов-органов и определенной структуры входящих в живой организм химических соединений. Результатом субстратного подхода к проблеме биогенеза (т.е. происхождение жизни) является получение информации об отборе химических элементов и структур.

Действительно, налицо определенный отбор химических элементов для создания эволюционирующих систем. В настоящее время известно более 100 химических элементов, однако, основу живых систем составляют только 6 элементов, получивших название органогенов: С, Н, О, N, Р, S , общая весовая доля которых составляет 97,4 % . За ними следуют еще 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биосистем: Na, K, Ca, Mg, Mn, Fe, Si, Al, Cl, Cu, Zn, Co. Их весовая доля в организмах »1,6 %.

Об отборе свидетельствует и общая химическая картина мира. В настоящее время известно около 8 млн. химических соединений. Из них подавляющее большинство (около 96 %) – это органические соединения, основной строительный материал которых все те же 6 + 12 элементов. Интересно, что из остальных химических элементов Природа создала лишь около 300 тыс. неорганических соединений.

Важно отметить, что из такого узкого круга отобранных природой органических веществ сформировался весь труднообозримый мир живого.

Каковы же принципы отбора химических соединений - своеобразной “химической подготовки” к образованию сложнейших биологических систем?

Оказалось, что определяющая роль здесь принадлежит катализаторам, т.е. веществам, активирующим молекулы реагентов и повышающим скорость химических реакций. Однако, катализаторы не остаются неизмененными в ходе химических реакций: их активность либо падает, либо возрастает.

К началу документа

3. Общая теория химической эволюции и биогенеза

В 60-х годах 20-го века было установлено экспериментально, что в ходе химической эволюции отбирались те химические структуры, которые способствовали резкому повышению активности и избирательной способности катализаторов. Это позволило профессору МГУ А.П. Руденко в 1964 г. теорию саморазвития открытых каталитических систем, которая по праву можно считать общей теорией хемо- и биогенеза. Сущность этой теории состоит в том, что химическая эволюция представляет собой саморазвитие каталитических систем, и, следовательно, эволюционирующим веществом являются катализаторы.

А.П. Руденко сформулировал и основной закон химической эволюции: с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности.

Саморазвитие, самоорганизация систем может происходить только за счет постоянного притока энергии, источником которой является основная, т.е. базисная реакция. Из этого следует, что максимальные эволюционнные преимущества получают каталитические системы, развивающиеся на базе экзотермических реакций.

Временной период химической эволюции. На ранних стадиях химической эволюции мира катализ отсутствовал. Первые проявления катализа начинаются при понижении температуры до 5000° К и ниже и образовании первичных твердых тел. Полагают также, что когда период химической подготовки, т.е. период интенсивных и разнообразных химических превращений сменился периодом биологической эволюции, химическая эволюция как бы застыла.

Прикладное значение эволюционной химии. Эволюционная химия не только помогает раскрыть механизм биогенеза но и позволяет разработать новое управление химическими процессами, предполагающее применение принципов синтеза себе подобных молекул и создание новых мощных катализаторов, в том числе биокатализаторов – ферментов, а это, в свою очередь, является залогом решения задач по созданию малоотходных, безотходных и энергосберегающих промышленных процессов.

К началу документа

Теории возникновения жизни

Наиболее известными к настоящему времени теориями возникновения жизни на Земле являются следующие.

Креационизм . Согласно этой теории жизнь была создана сверхъестественным существом – Богом в определенное время. Этого взгляда придерживаются последователи почти всех религиозных учений. Однако и среди них нет единой точки зрения по этому вопросу, в частности, по трактовке традиционного христианско-иудейского представления о сотворении мира (Книга Бытия). Одни буквально понимают Библию и считают, что мир и все населяющие его живые организмы были созданы за шесть дней продолжительностью по 24 часа (в 1650 г. архиепископ Ашер, сложив возраст всех людей, упоминающихся в библейской генеалогии, вычислил, что Бог приступил к сотворению мира в октябре 4004 г. до н.э. и закончил свой труд в декабре 23 октября в 9 часов утра, создав человека. При этом, правда, получается, что Адам был сотворен в то время, когда на Ближнем Востоке уже существовала хорошо развитая городская цивилизация ). Другие же не относятся к Библии как к научной книге и считают, что главное в ней – божественное откровение о создании мира всемогущим Творцом в понятной для людей древнего мира форме. Другими словами, Библия не отвечает на вопросы «каким образом?» и «когда?», а отвечает на вопрос «почему?». В широком смысле креационизм допускает, таким образом, как создание мира в его законченном виде, так и создание мира, эволюционирующего по законам, заданным Творцом.

Процесс божественного сотворения мира мыслится как имевший место лишь единожды и поэтому недоступный для наблюдения. Однако для верующего теологическая (божественная) истина абсолютна и не требует доказательств. В то же время, для настоящего ученого научная истина не является абсолютной, она всегда содержит элемент гипотезы. Таким образом, концепция креационизма автоматически выносится за рамки научного – исследования, поскольку наука занимается лишь теми явлениями, которые поддаются наблюдению, могут быть подтверждены или отвергнуты в ходе исследований (принцип фальсифицируемости научных теорий). Другими словами, наука никогда сможет ни доказать, ни опровергнуть креационизм.

Самопроизвольное зарождение . Согласно этой теории жизнь возникала и возникает неоднократно из неживого вещества. Эта теория была распространена в Древнем Китае, Вавилоне, Египте. Аристотель, которого часто называют основателем биологии, развивая более ранние высказывания Эмпедокла об эволюции живого, придерживался теории самопроизвольного зарождения жизни. Он считал, что «..живое может возникать не только путем спаривания животных, но и разложением почвы.». С распространением христианства эта теория оказалась в одной проклятой церковью «обойме» с оккультизмом, магией, астрологией, хотя и продолжала существовать где-то на заднем плане, пока не была опровергнута экспериментально в 1688 г. итальянским биологом и врачом Франческо Реди. Принцип «Живое возникает только из живого» получил в науке название Принципа Реди. Так складывалась концепция биогенеза, согласно которой жизнь может возникнуть только из предшествующей жизни. В середине 19-го века Л. Пастер окончательно опроверг теорию самопроизвольного зарождения и доказал справедливость теории биогенеза.

Теория панспермии . Согласно этой теории жизнь была занесена на Землю извне, поэтому ее, в сущности, нельзя считать теорией возникновения жизни как таковой. Она не предлагает никакого механизма для объяснения первичного возникновения жизни, а просто переносит проблему происхождения жизни в какое-то другое место Вселенной.

Теория биохимической эволюции . Жизнь возникла в специфических условиях древней Земли в результате процессов, подчиняющимся физическим и химическим законам.

Последняя теория отражает современные естественнонаучные взгляды и поэтому будет рассмотрена подробнее.

Согласно данным современной науки возраст Земли составляет примерно 4,5 – 5 млрд. лет. В далеком прошлом условия на Земле коренным образом отличались от современных, что обусловило определенное течение химической эволюции, которая явилась предпосылкой для возникновения жизни. Другими словами, собственно биологической эволюции предшествовала предбиотическая эволюция, связанная с переходом от неорганической материи к органической, а затем к элементарным формам жизни. Это было возможным в определенных условиях, которые имели место на Земле в то время, а именно:

· высокая температура, порядка 4000 О С,
· атмосфера, состоящая из водяных паров, СО
2 , СН 3 , NH 3 ,
· присутствие сернистых соединений (вулканическая активность),
· высокая электрическая активность атмосферы,
· ультрафиолетовое излучение Солнца, которое беспрепятственно достигало нижних слоев атмосферы и поверхности Земли, поскольку озоновый слой еще не сформировался.

Следует подчеркнуть одно из важнейших отличий теории биохимической эволюции от теории самопроизвольного (спонтанного) зарождения, а именно: согласно этой теории жизнь возникла в условиях, которые для современной биоты непригодны!

К началу документа

Гипотеза Опарина-Холдейна . В 1923 г. появилась знаменитая гипотеза Опарина, сводившаяся к следующему: первые сложные углеводороды могли возникать в океане из более простых соединений, постепенно накапливаться и проводить к возникновению «первичного бульона». Эта гипотеза быстро приобрела вес теории. Надо сказать, что последующие экспериментальные исследования свидетельствовали о правомерности таких предположений. Так в 1953 г. С. Миллер, смоделировав предполагаемые условия древней Земли (высокая температура, ультрафиолетовая радиация, электрические разряды) синтезировал в лабораторных условиях 15 аминокислот, входящих в состав живого, некоторые простые сахара (рибоза). Позднее были синтезированы простые нуклеиновые кислоты (Орджел). В настоящее время синтезированы все 20 аминокислот, составляющих основу жизни.

Опарин предполагал, что решающая роль в превращении неживого в живое принадлежит белкам . Белки способны образовывать гидрофильные комплексы: молекулы воды образуют вокруг них оболочку. Эти комплексы могут обособляться от водной фазы и образовывать так называемые коацерваты (<лат. сгусток, куча) с липидной оболочкой, из которой затем могли образоваться примитивные клетки. Существенный недостаток этой гипотезы – она не опирается на современную молекулярную биологию. Это вполне объяснимо, поскольку механизм передачи наследственных признаков и роль ДНК стали известны сравнительно недавно.

(Английский ученый Холдейн (Кембриджский университет) в 1929 г. опубликовал свою гипотезу, согласно которой, живое также появилось на Земле в результате химических процессов в богатой диоксидом углерода атмосфере Земли, и первые живые существа были, возможно, «огромными молекулами». Он не упоминал ни о гидрофильных комплексах, ни о коацерватах, но его имя часто упоминается рядом с именем Опарина, а гипотеза получила название гипотезы Опарина-Холдейна.)

Решающую роль в возникновении жизни впоследствии отводили появлению механизма репликации молекулы ДНК. Действительно, любая сколь угодно сложная комбинация аминокислот и других сложных органических соединений – это еще не жизнь. Ведь важнейшее свойство жизни – ее способность к самовоспроизведению. Проблема здесь в том, что сама по себе ДНК «беспомощна», она может функционировать только при наличии белков-ферментов (например, молекула ДНК-полимеразы, «расплетающая» молекулу ДНК, подготавливая ее к репликации). Остается открытым вопрос, как самопроизвольно могли возникнуть такие сложнейшие «машины» как пра-ДНК и нужный для ее функционирования сложный комплекс белков-ферментов.

В последнее время разрабатывается идея возникновения жизни на основе РНК , т.е. первыми организмами могли быть РНК, которые, как показывают опыты, могут эволюционировать даже в пробирке. Условия для эволюции таких организмов наблюдаются при кристаллизации глины . Эти предположения основаны, в частности, на том, что при кристаллизации глин каждый новый слой кристаллов выстраивается в соответствии с особенностями предыдущего, как бы получая от него информацию о строении. Это напоминает механизм репликации РНК и ДНК. Таким образом, получается, что химическая эволюция началась с неорганических соединений, и первые биополимеры могли быть результатом автокаталитических реакций малых молекул алюмосиликатов глины.

К началу документа

Гиперциклы и зарождение жизни . Концепция самоорганизации может способствовать лучшему пониманию процессов происхождения и эволюции жизни, исходя из теории химической эволюции Руденко, рассмотренной ранее и гипотезы немецкого физико-химика М. Эйгена. Согласно последней, процесс возникновения живых клеток тесно связан с взаимодействием нуклеотидов (нуклеотиды - элементы нуклеиновых кислот – цитозин, гуанин, тимин, аденин ), являющихся материальными носителями информации , и протеинов (полипептидов [ 1] ), служащих катализаторами химических реакций. В процессе взаимодействия нуклеотиды под влиянием протеинов воспроизводят самих себя и передают информацию следующему за ними протеину, так что возникает замкнутая автокаталитическая цепь , которую М. Эйген назвал гиперциклом . В ходе дальнейшей эволюции из них возникают первые живые клетки, сначала безъядерные (прокариоты), а затем с ядрами – эукариоты.

Здесь, как видим, прослеживается логическая связь между теорией эволюции катализаторов и представлениями о замкнутой автокаталитической цепи. В ходе эволюции принцип автокатализа дополняется принципом самовоспроизведения целого циклически организованного процесса в гиперциклах, предложенного М.Эйгеном. Воспроизведение компонентов гиперциклов, так же как и их объединение в новые гиперциклы, сопровождается усилением метаболизма, связанного с синтезированием высокоэнергетических молекул и выведением как «отбросов» бедных энергией молекул. (Здесь интересно отметить особенности вирусов как промежуточной формы между жизнью и нежизнью: они лишены способности к метаболизму и, внедряясь в клетки, начинают пользоваться их метаболической системой ). Итак, по Эйгену происходит конкуренция гиперциклов, или циклов химических реакций, которые приводят к образованию белковых молекул. Цикла, которые работают быстрее и эффективнее, чем остальные, «побеждают» в конкурентной борьбе.

Таким образом, концепция самоорганизации позволяет установить связь между живым и неживым в ходе эволюции, так что возникновение жизни представляется отнюдь не чисто случайной и крайне маловероятной комбинацией условий и предпосылок для ее появления. Кроме того, жизнь сама готовит условия для своей дальнейшей эволюции .

К началу документа

Контрольные вопросы

1. Перечислите основные этапы образования планет в соответствии с ротационной моделью.
2. Какие общие особенности планет Солнечной системы свидетельствуют об едином происхождении планет?
3. Поясните распространенность химических элементов в солнечной системе.
4. Как происходила дифференциация вещества Земли? Объясните строение Земли.
5. Что такое геохронология?

6. На какие части (по степени изученности) подразделяется история Земли?
7. Какие элементы называются органогенами и почему?
8. Какие элементы образуют химический состав живых систем?
9. Что такое самоорганизация?
10. В чем сущность субстратного и функционального подходов к проблеме самоорганизации химических систем?

11. Что такое эволюционная химия?
12. Что можно сказать о естественном отборе химических элементов и их соединений в ходе химической эволюции?
13. Что означает саморазвитие каталитических систем?
14. В чем заключается прикладное значение эволюционной химии?
15. Перечислите основные теории возникновения жизни.

16. Что такое креационизм? Можно ли опровергнуть креационизм? Объясните ваш ответ.
17. Что является слабым местом теории панспермии?
18. Чем отличается теория биохимической эволюции от теории самопроизвольного (спонтанного) зарождения жизни?
19. Какие условия считаются необходимыми для возникновения жизни в результате биохимической эволюции?
20. Что такое предбиотическая эволюция?

21. В чем заключается гипотеза Опарина - Холдейна?
22. В чем заключается основная проблема объяснения перехода от «неживого» к «живому»?
23. Что такое гиперцикл?

Литература

1. Дубнищева Т.Я. Концепции современного естествознания. - Новосибирск: ЮКЭА, 1997.
2. Кузнецов В.Н., Идлис Г.М., Гутина В.Н. Естествознание. - М.: Агар,1996.
3. Грядовой Д.Н. Концепции современного естествознания. Структурный курс основ естествознания. - М.: Учпед,1999.
4. Концепции современного естествознания /под ред. С.И. Самыгина. - Ростов н/Д: Феникс, 1997.
5. Яблоков А.В., Юсуфов А.Г. Эволюционное учение. – М.: Высшая школа, 1998.
6. Рузавин Г.И. Концепции современного естествознания. – М.: «Культура и спорт», ЮНИТИ, 1997.
7. Солопов Е.Ф. Концепции современного естествознания. – М.: Владос, 1998.

8. Нудельман Р. Кембрийский парадокс. - "Знание - Сила", август, сентябрь-октябрь 1988.

[ 1] полипептиды – длинная цепь аминокислот

К началу документа

Права на распространение и использование курса принадлежат
Уфимскому Государственному Авиационному Техническому Университету

Обновлено 19.02.2002.
Web-мастер О.В. Трушин

Другие похожие работы, которые могут вас заинтересовать.вшм>

14714. Эволюция Земли 105.7 KB
Ведь самые глубокие скважины которые удалось пробурить в земной толще не превышают 1012 км а это составляет около одной трети средней толщины земной коры около 30 км и всего лишь 017 радиуса Земли 6300 км. Именно таким образом была например обнаружена граница между земной корой и верхней литосферой граница Мохоровичича доказано что внешнее ядро является жидким а также получено огромное количество достоверных данных о внутренней структуре Земли. Именно с помощью радиоактивных часов установлен возраст Земли и проведена...
21266. Химическая кинетика и равновесие 23.79 KB
Цель работы: изучение влияние температуры на скорость реакции концентрации на сдвиг химического равновесия. Теоретическое обоснование: Скоростью химической реакции называется количество вещества вступающего в реакцию или образующегося в результате реакции за единицу времени в единице объёма для гомогенных реакций или на единице поверхности раздела фаз для гетерогенных реакций. Если за промежуток времени...
21607. Химическая коррозия. Методы защиты от коррозии 21.93 KB
Машины и аппараты изготовленные из металлов и сплавов при эксплуатации в природных или технологических средах подвержены коррозии. В результате коррозии изменяются свойства металла и часто происходит ухудшение его функциональных характеристик. Металл при коррозии может частично или полностью разрушаться.
12744. Химическая характеристика природных вод - объектов эколого-аналитического контроля 82.84 KB
Природные воды как дисперсные системы. Водородный показатель рН влияние малых концентраций кислот и щелочей на рН природной воды. Природные воды как дисперсные системы. Объектом экологоаналитического контроля являются воды – пресные поверхностные подземные морские а также атмосферные осадки талые воды сточные воды сбрасываемые в поверхностные водоемы.
9340. Оценка стоимости земли 20.95 KB
Оценка стоимости земли. Оценка стоимости земли. Предмет оценки Земельный рынок Нормативная цена земли Рыночная стоимость земли. Вовторых во многих субъекта РФ введена система дифференцированного налогообложения земли.
7608. Состояние рынка земли в России 67.95 KB
Проблема совершенствования правового регулирования земельных отношений в России в последнее время стала одной из самых актуальных, и широко обсуждается не только среди юристов, законодателей и политиков, но и в обществе в целом. Мнения сторон, участвующих в обсуждении иногда противоречивы
5794. ДЫРЫ В ОЗОНОВОМ СЛОЕ ЗЕМЛИ 17.86 KB
Роль которую играет озон для человека и для всего живого на Земле стала ясна с открытием озонового слоя. В 1912 году французским физикам Шарлю Фабри и Анри Буиссону с помощью спектроскопических измерений удалось доказать что в отдалённых слоях атмосферы существует озон предохраняющий поверхность планеты от губительного воздействия ультрафиолетового солнечного излучения. Высота озонового слоя составляет от 12 до 50 км над поверхностью Земли. По мнению современных исследователей лишь существование озонового слоя позволило живым организмам...
20227. РАСПРЕДЕЛЕНИЕ ТЕПЛА. ОСНОВНЫЕ КЛИМАТИЧЕСКИЕ ЗОНЫ ЗЕМЛИ 3.96 MB
Отсюда возникло и самое слово климат клима – наклон обозначавшее в течение многих веков некоторый пояс земной поверхности ограниченный двумя широтными кругами. Задачи курсовой работы: Изучить факторы распределения тепла по поверхности Земли; Рассмотреть основные климатические зоны Земли. На поверхности Солнца фотосфере температура достигает...
20215. Белорусские земли в составе Речи Посполитой (1569-1795гг.) 55.14 KB
Создание Речи Посполитой. Государственно правовое и политическое положение белорусских земель в составе Речи Посполитой. Политический кризис Речи Посполитой и три раздела её территории.
3202. Спрос и предложение на рынке земельных ресурсов. Неэластичность предложения услуг земли 23.7 KB
Неэластичность предложения услуг земли. Запасы земли как ресурса для нас строго ограничены и невосполнимы. Уникальность земельных ресурсов и строгая ограниченность земли для использования порождают такое явление как земельная рента. как уплата за использование жестко ограниченного в количестве и невосполнимого ресурса – земли.