Чем отличается переменная звезда от обычной. Пульсирующие переменные звезды. Звёзды главной последовательности

  • 13.07.2020

Переменные звезды – это звезды, блеск которых изменяется. У одних переменных звезд блеск изменяется периодически, у других наблюдается беспорядочное изменение блеска. К периодическим переменным звездам относятся, например, затменные переменные звезды, которые, как вы знаете, предоставляют собой двойные системы. Однако, в отличие от них, известны десятки тысяч одиночных звезд, блеск которых меняется вследствие происходящих на них физических процессов. Такие звезды называются физическими переменными. Их открытие и исследование показали, что многообразие звезд проявляется не только в том, что звезды отличаются друг от друга массами, размерами, температурами, светимостями и спектрами, но и в том, что некоторые из этих физических характеристик не остаются неизменными у одних и тех же звезд.

Цефеиды

Цефеиды – это весьма распространенный и очень важный тип физических переменных звезд.

Исследование спектров цефеид показывает, что вблизи максимума блеска фотосферы этих звезд приближаются к нам с наибольшей скоростью, а в близи минимума – с наибольшей скоростью удаляются от нас. Это следует из анализа смещений линий в спектрах цефеид на основе эффекта Доплера.

С движением фотосферы звезды, а значит, и с изменением ее размеров мы встречаемся впервые. В самом деле, у Солнца и других подобных ему звезд размеры практически не меняются. Следовательно, в отличие от таких стационарных звезд, цефеиды – нестационарные звезды. Цефеиды – это пульсирующие звезды, которые периодически раздуваются и сжимаются. В процессе пульсации цефеиды изменяется и температура ее фотосферы. Самую высокую температуру звезда имеет в максимуме блеска.

Между периодом пульсации долгопериодических цефеид и светимостью этих звезд существует зависимость, получившая название “период-светимость” Если из наблюдений известен период изменения блеска цефеиды, то, пользуясь зависимостью “период - светимость”, можно определить ее абсолютную звездную величину, а тогда по формуле легко вычислить расстояние до цефеиды, зная из наблюдений ее видимую звездную величину. Так как цефеиды относятся к звездам-гигантам и сверхгигантам (т.е. тем, которые имеют огромные размеры и светимости), то они видны с больших расстояний. Обнаруживая цефеиды в далеких звездных системах, можно определить расстояние до этих систем.

Цефеиды не принадлежат к числу редко встречающихся звезд. Вероятно, многие звезды на протяжении своей жизни некоторое время бывают цефеидами. Поэтому изучение цефеид важно для понимания эволюции звезд.

Другие физические переменные звезды

Цефеиды – это лишь один из многочисленных типов физических переменных звезд. Первая переменная звезда была открыта в 1596 г. в созвездии Кита (Мира Кита, или Удивительная Кита). Это не цефеида. Ее колебания блеска происходят с периодом около 350 д, причем блеск в максимуме достигает 3 m , а в минимуме 9 m . Впоследствии было открыто много других долгопериодических звезд типа Миры Кита.

Преимущественно это “холодные” звезды – гиганты спектрального класса М. Изменение блеска таких звезд, по-видимому, связанно с пульсацией и периодическими извержениями горячих газов из недр звезды в более высокие слои атмосферы.

Далеко не у всех физических переменных звезд наблюдаются периодические изменения. Известно множество звезд, которые относятся к полуправильным или даже неправильным переменным. У таких звезд трудно или вообще невозможно заметить закономерность в изменении блеска.

ПЕРЕМЕННЫЕ ЗВЕЗДЫ

Что такое переменные звезды?

В отличие от Луны с переменностью ее фазы или планет, движущихся на фоне звезд, сами звезды в античное время считались постоянными и неподвижными, в отличие от суетливой жизни на Земле. Время от времени хроники регистрировали появление "звезды-гостьи", которую бы в наше время назвали "Новой" или "Сверхновой", что свидетельствовало, что и в звездном мире не все так постоянно. Однако, современное представление о различных типах переменных звезд было заложено открытием в 1596г. Фабрициусом звезды, названной "Мира" (т.е. "удивительная") Кита, которая показывала периодичекое появление и исчезновение, а также периодических ослаблений блеска у звезды Алголь (бета Персея), открытых первоначально Монтанари, а потом переоткрытых в 1782 году Джоном Гудрайком и интерпретированных им затмениями одной звезды другой.

"Переменной называется звезда, которая показывает изменение своих характеристик за время ее исследований на заданном уровне точности". Это определение показывает не только факт переменности звезды, но и субъективные условия ее наблюдения. Амплитуда изменения блеска для разных звезд находится в диапазоне от тысячных звездной величины до двадцати звездных величин, а характерное время изменения блеска составляет от долей секунды до тысяч лет. Исходя из современных представлений о структуре звезд, все звезды эволюционируют, меняют свои характеристики со временем. Однако, по "презумпции невиновности", "пока не доказана вина"="не подтверждена переменность", звезда переменной не считается и в Общий каталог переменных звезд (ОКПЗ) не заносится. В настоящее время в ОКПЗ занесено около 43 тысячи переменных звезд, еще примерно впятеро больше содержится в других каталогах (VSX и др.). Однако, пока не будет подтверждены факт и тип их переменности, они считаются "заподозренными в переменности" и не имеют собственного названия.

Причин изменений блеска очень много. Основные группы - это физически переменные звезды (характеристики которых меняются, например, эруптивные и пульсирующие) и геометрически переменные - т.е. системы с несимметричной диаграммой направленности излучения, которые поворачиваются к наблюдателю в результате вращения (затменные двойные системы, незатменные системы с асимметричными компонентами). К последним, относят и звезды, периодически затмеваемые экзопланентами. В этом случае неуместно говорить "затменная двойная звезда", но вполне правильно "затменная двойная система".

Различные причины переменности приводят к различным наблюдательным проявлениям, т.е. кривым блеска (зависимость звездной величины от времени, а для периодических звезд - от фазы). Поэтому была разработана официальная система классификации, принятая в ОКПЗ. В настоящее время в ОКПЗ принято 79 типов и подтипов переменности. Классификация и описание приведены в книге: Н.Н.Самусь "Переменные звезды".

Естественно, с обнаружением новых звезд становятся известными все новые и новые объекты, которые со временем могут стать "прототипами" новых типов. Поэтому часто типы называют по имени звезд (напр., "мирида" = звезда типа Миры Кита, "лирида" = звезда типа RR Лиры, "цефеида" = звезда типа дельта Цефея) или двойственно, например, "карликовая новая" = звезда типа U Близнецов, "поляр" = звезда типа AM Геркулеса, "промежуточный поляр" = звезда типа DQ Геркулеса, "рентгеновский пульсар" = звезда типа HZ Геркулеса, "вспыхивающая" = звезда типа UV Кита и т.д.

Систему классификации ОКПЗ можно сравнить со справочником или учебником - изменения в нее вносятся после того, как в отдельных статьях или группах статей обосновывается необходимость введения новых типов. Например, в очереди на рассмотрение "асинхронные поляры" = звезды типа BY Жирафа, "магнитные карликовые новые" = звезды типа DO Дракона, "импакторы" = звезды типа V361 Лиры и др.

Зачем наблюдать переменные звезды?

Вселенная является лабораторией, в которой происходят все возможные процессы, которые разрешены законами Природы. Не имея возможности проводить эксперименты в космических масштабах, ученые наблюдают планеты, звезды и звездные системы. Такие исследования позволяют не только уточнять имеющиеся физические модели, но и обобщать их при экзотически гигантских расстояниях, давлениях, плотностях, температурах. Список астрономических открытий, которые привели к внедрению в навигацию, науку и технику, огромен. Астрономия, математика и физика и ряд других наук находятся на переднем крае естествознания, взаимно дополняя и обобщая друг друга.

Переменные звезды - одни из наиболее интересных классов космических объектов, которые находятся на активных стадиях эволюции, и потому проявляют действие большего числа физических законов в разных комбинациях.

Их необходимо систематически наблюдать на протяжении десятилетий для того, чтобы изучать историю их поведения. Однако, число переменных звезд значительно превышает количество профессиональных астрономов и тем более количество телескопов. Кроме того, трудно представить столетия наблюдений какого-либо объекта одним из астрономов на одном телескопе.

Таким образом, астрономы-любители вносят реальный и весьма полезный вклад в науку своими визуальными, фотографическими, фотоэлектрическими и ПЗС наблюдениями переменных звезд. Эти данные важны для анализа поведения переменных звезд, планирования наблюдений некоторых звезд с наземных и космических обсерваторий, компьютеризированных теоретических моделей.

Исследование переменных звезд очень важно для исследования характеристик звезд и их эволюции. Часть этой информации было бы трудно или невозможно получить другими методами. Во многих случаях характер переменности (часто состоящей из нескольких компонент) позволяет выбрать между моделями.

Переменные звезды продолжают играть важную роль в нашем понимании Вселенной. Вспышки Сверхновых приводят к обогащению тяжелыми элементами межзвездного пространства, что позволяет образовываться планетам с твердыми оболочками. Вряд ли жизнь могла бы образоваться, если бы в протозвездном облаке не было элементов тяжелее водорода и гелия. Но и взрывы очень близких Сверхновых вблизи Солнечной системы могут катастрофически повлиять на жизнь на Земле. Наблюдения Сверхновых привели нас к осознанию того, что расширение Вселенной ускоряется, а не замедляется, как можно было ожидать.

Новые звезды показывают регулярные вспышки с интервалом от десятков до сотен тысяч лет, что объясняется термоядерными взрывами в их атмосферах по мере накопления падающего на них вещества, богатого водородом. Затменные двойные звезды являются наилучшими лабораториями для определения не только температур, но и масс и радиусов. Цефеиды сыграли важную роль в определении расстояний до далеких галактик и определения возраста Вселенной. Переменные звезды типа Миры Кита дают нам возможность заглянуть в будущее развитие нашей собственной звезды, Солнца. Аккреционные диски катаклизмических переменных помогают нам понять поведение дисков на еще больших масштабах, как и процессы внутри ядер активных галактик с сверхмассивными черными дырами. Даже поиск внеземной жизни связан с исследованием переменных звезд. Транзиты внесолнечных планет помогают понять процессы образования планет и самой жизни. А, как мы знаем, тяжелые химические элементы, необходимые для жизни, возникают при термоядерных реакциях в ядрах звезд.

Что и как наблюдать?

В предыдущих выпусках "Одесского Астрономического Календаря" были приведены карты окрестностей ярких переменных звезд, доступных для любительских наблюдений в бинокль или небольшой телескоп. Методы их визуальных и фотографических наблюдений были описаны в классических книгах Владимира Платоновича Цесевича "Что и как наблюдать на небе" и "Переменные звезды и их наблюдение". В последние годы увеличилось количество личных обсерваторий, оснащенных телескопами с диаметром зеркала 15-40 см и ПЗС матрицами, что позволяет наблюдать слабые объекты. Для обработки таких изображений различными авторами разработано несколько программ, которые работают под операционными системами Linux (IRAF, MIDAS и др.) и Windows (бесплатные MuniPack, WinFits, IRIS, популярная коммерческая MaximDL и др.). Методика таких наблюдений описана в книге: А.В.Миронов "Прецизионная фотометрия".

Результаты наблюдений представляют ценность для астрономического сообщества, когда они правильно и тщательно обработаны, и приведены в формате, принятым в том или ином сообществе. По терминологии, астрономы делятся на профессионалов (которые работают в специальных учреждениях и получают за научную работу зарплату) и любителей (которые зарабатывают другими видами деятельности, но занимаются астрономией "по любви" в свободное от работы время). Есть еще одно слово "дилетант", которое свидетельствует о низком уровне подготовки или малом опыте, и оно может относиться и к некоторым любителям, и к некоторым профессионалам. Популяризаторская деятельность ставит своей целью инициировать переход от дилетантов к любителям, а от них и к профессионалам. В данной статье мы рассматриваем возможные направления деятельности любителей, которые могут принести реальный вклад в науку.

Для публикации патрульных визуальных (и реже фотографических или ПЗС) наблюдений используется стандартный формат - время в Юлианских датах (инструкция и таблица приведены в предыдущих выпусках ОАК), звездная величина и трехбуквенный код наблюдателя (напр., VER= Michel Verdenet, Франция). Таблицы таких измерений блеска для каждой из звезд присылают в базы данных ассоциаций наблюдателей переменных звезд. Ассоциации созданы практически во всех развитых странах, однако, с учетом роста международной кооперации, идет тенденция использования международных баз данных, объединяющих результаты наблюдений из многих стран.

Наибольшей в мире является American Association of Variable Stars Observers (AAVSO, Американская ассоциация наблюдателей переменных звезд), в которой насчитывается в настоящее время более 22 миллионов индивидуальных оценок блеска около 10 тысяч переменных звезд разных типов, и это число увеличивается в последнее время примерно на полмиллиона в год. Отметим, что в 2011 году AAVSO отпраздновали свой 100-летний юбилей, и мы поздравляем коллег с этим знаменательным событием.

Согласно недавнему рейтингу AAVSO, украинские наблюдатели занимали 11-е место по количеству наблюдений, присланных в международную базу данных этой общественной организации. О важности таких наблюдений для профессиональной науки свидетельствует тот факт, что в США данная база данных находится в знаменитом Гарвардском университете. Аналогичные базы данных в других странах также помещаются на университетские интернет-серверы (Страсбург, Франция; Киото, Япония; Брно, Чехия и др.).

Весьма важными являются "новые наблюдения" на основании "старых фотонегативов". Новооткрытую звезду можно исследовать и "в прошлом", используя полученные ранее патрульные наблюдения. Наибольшая по численности в СНГ (и третья в мире) коллекция, насчитывающая более 100 тысяч негативов, хранится в "Стеклотеке" Астрономической обсерватории Одесского национального университета, и используется профессионалами и любителями, в том числе, по проекту "Украинская виртуальная обсерватория". Великолепная коллекция негативов с существенно более слабыми звездами (и соответственно, меньшим полем зрения) получена в Государственном астрономическом институте им. П.К.Штернберга при Московском государственном университете.

Другое важное направление, которое основано на результатах обработки исходных наблюдений - это моменты минимумов затменных двойных звезд или максимумов пульсирующих. Такое различие связано с тем, что в максимуме блеска звезда ярче, и большее число звезд доступно для наблюдений с одним и тем же инструментом. Кроме того, для большинства звезд, максимумы более узкие, чем минимумы, поэтому требуют меньшую продолжительность наблюдений и определяются с лучшей точностью. Для затменных звойных звезд, наоборот, более узкими и явно выраженными являются именно затмения. Для определения используются несколько методов. Один из них, использующий аппроксимацию кривой блеска полиномом с выбором статистически оптимальной степени, реализован в программе VSCalc (автор В.В.Бреус).

Разные экстремумы используются и для весьма популярных исследований промежуточных поляров - определение максимумов более быстрых колебаний блеска, связанных с вращением магнитного белого карлика, но минимумов орбитальной переменности, которые обычно связаны с полными или частными затмениями. Для определения сглаживающей кривой с использованием мультипериодической мультигармонической аппроксимации с учетом полиномиального тренда, рекомендуем использовать программу MCV (авторы И.Л.Андронов и А.В.Бакланов).

Использование экстремумов позволяет проводить исследования так называемых "O-C" диаграмм - зависимостей от времени или номера цикла отклонений моментов экстремумов от теоретически предсказанных значений (напр., по простейшей формуле T E =T 0 +P . E, где T E - теоретический момент времени, соответствующий номеру цикла E, P- период и T 0 - начальная эпоха). Проводя математическое моделирование этой наблюдательной зависимости, можно уточнять значения периода и начальной эпохи, исследовать возможные "вековые" изменения периода (связанные в двойных системах с перетеканием вещества, магнитным или немагнитным звездным ветром, гравитационным излучением, в пульсирующих с медленным изменением структуры звезды) или периодические, связанные с наличием в системе третьего (и более) компонента. Существует несколько электронных баз данных моментов экстремумов, созданных в различных организациях - B.R.N.O., BAV, BBSAG, AAVSO, GEOS и др. Наиболее полные результаты исследований в бумажном виде были опубликованы 6-томной монографии (авторы Й.Крейнер (Польша), И.С.Нха, Ч.Х.Ким (Корея)). Однако, в последующее десятилетие основными стали электронные публикации.

Хотя составители стараются использовать всю доступную литературу, некоторые различия все же есть. Если Вы заинтересовались определением моментов экстремумов, то желательно посылать эти данные либо самостоятельно в журнал в соответствии с правилами для авторов (один из последних примеров такой компиляции в журнале "Open European Journal on Variable Stars" N 137), либо в одну или несколько из указанных баз данных, чтобы войти в очередную регулярную статью - отчет.

Как и в случае публикации исходных наблюдений, сравнительно редко можно сделать открытие на основании небольшого числа собственных данных.

Моменты экстремумов вместо оригинальных наблюдений имеют некоторые преимущества - компактность (вместо десятков наблюдений блеска одно значение) и подготовка предварительных значений для последующего анализа. Однако, развитие компьютерных методов математического моделирования с использованием различных алгоритмов позволило бы переобработать наблюдательные данные другим исследователям, поэтому таблица значений блеска была бы желательна.

Таким образом, есть широкая возможность выбора типа наблюдений - патрульные (одна оценка блеска для долгопериодических звезд, напр. мирид, полуправильных, цефеид, когда за всю ночь или за вечер можно сделать оценки блеска нескольких единиц или десятков звезд), или временные ряды (одна или несколько звезд в ночь с продолжительностью ряда от нескольких часов до всей ночи). Последнее стало весьма популярным, поскольку не требует наведения телескопа на разные объекты. Такой тип наблюдений требуют короткопериодические объекты - катаклизмические двойные звезды (классические и промежуточные поляры, карликовые новые, новоподобные) - желательно несколько ночей наблюдений за сезон, затменные звезды, а также мультипериодические пульсирующие переменные звезды типа RR Лиры с эффектом Блажко и типа Дельта Щита.

Конечно, к наблюдениям следует готовиться. Посмотреть, какие из заинтересовавших Вас звезд будут ночью достаточно высоко над горизонтом, чтобы атмосферное поглощение не поглощало значительную часть света. Некоторые исследователи стараются не наблюдать, когда звезда ниже 30 градусов над горизонтом. "Охотникам за экстремумами" следует рассчитать эфемериды - т.е. теоретические значения моментов времени, вблизи которых выбрать интервал времени наблюдений (чтобы охватить восходящую и нисходящую части кривой блеска если не полностью, то хотя бы частично). Кроме того, моменты времени "по эфемериде" приведены на центр Солнца (гелиоцентрические) или центр Солнечной системы (барицентрические), но мы наблюдаем на Земле (время геоцентрическое), поэтому сигнал может наблюдаться раньше или позже из-за того, что свет проходит расстояние, равное радиусу земной орбиты, за 8 минут 18 секунд. Более подробно об этом эффекте "гелиоцентрической поправки" можно прочитать в литературе, а вычислить, например, при помощи программы MCV.

Поскольку предполагается, что возможны изменения периодов, то наблюдаемый момент может быть смещен относительно вычисленного. Поэтому интервал времени наблюдений не должен быть слишком узким. Если объектов несколько, то распределить время на соответствующие интервалы. Для катаклизмических и мультипериодических звезд используется кривая блеска, поэтому желательно наблюдать все доступное время.

Что именно наблюдать в ближайшие ночи, зависит от пристрастий исследователя, времени года, широты места наблюдения и координат звезды, ее блеска, амплитуды и точности измерений. По приведенным ниже интернет-ссылкам можно найти списки и карты окрестностей объектов, предлагаемых различными организациями - затменных двойных, промежуточных поляров, пульсирующих и других переменных звезд.

Среди множества объектов, обнаруженных в мире, выделяется группа новых переменных, которую открыла в Одессе студентка (ныне аспирантка) Наталья Вирнина. За 2 года по ее собственным наблюдениям с использованием ПЗС-матрицы она открыла более 60 новых периодических (затменных и пульсирующих) переменных звезд. 32 из них представлены в статье, приведенной в списке интернет-ссылок. Хотя основные характеристики уже определены, новые наблюдения в различных фильтрах были бы полезны как для уточнения периода и начальной эпохи, так и для определения температур по показателям цвета.

Как оформлять и где публиковать результаты?

Публикации о переменных звездах можно разделить на несколько категорий - аналитические статьи, содержащие разностороннее исследование; сообщения об открытиях, содержащие необходимый минимум информации; сообщения об открытии непериодических интересных событий в известных звездах; таблицы экстремумов блеска; таблицы индивидуальных значений блеска и, возможно, других характеристик. Наиболее сложными являются аналитические статьи, однако, они невозможны без получения исходных наблюдений. Поэтому каждая из этих категорий по-своему важна и привлекает своих авторов.

"Законодателями мод" в наименовании и классификации переменных звезд является группа, занимающаяся по поручению Международного Астрономического Союза разработкой "Общего каталога переменных звезд" (ОКПЗ=GCVS, General Catalogue of Variable Stars). После Победы в Великой отечественной войне, это право было передано в Советский Союз, и авторский коллектив работает в Москве на базе Государственного астрономического института им. П.К.Штернберга (Московский государственный университет) и Астрономического института Российской академии наук. Почти 30 лет работой руководит доктор физико-математических наук Николай Николаевич Самусь.

Кроме того, издаются журналы "Переменные звезды" (ПЗ) и "Переменные звезды. Приложение" (ПЗП), в которых могут быть опубликованы важные научные результаты не только профессионалов, но и любителей.

Естественно, что каждый журнал предлагает "свои правила для авторов", однако, существуют минимальные требования по характеристикам звезды или звезд, которые обязательно должны войти в статью. С учетом колоссального количества объектов, была разработана электронная форма, в которой авторы заполняют необходимые поля, и после этого текст статьи создается автоматически. Для журнала "Переменные звезды. Приложение", это: название заметки,имена и фамилии авторов, страна, город, организация, официальное название переменной звезды по ОКПЗ или по NVS (Каталог звезд, заподозренных в переменности), а также названия по другим каталогам, координаты, тип переменности, пределы изменения блеска (максимум и минимум) и фотометрическая система, для периодических звезд - период и начальная эпоха (минимум блеска затменных и максимум блеска пульсирующих), графические файлы с изображением кривой блеска и окрестностей звезды и соответствующие подписи, файл с таблицей наблюдений, замечания и комментарии в произвольной форме, ссылки на другие публикации. Аналогичные правила и для публикаций статей о переменных звездах в других журналах, однако, эта необходимая информация приводится в структурированном тексте самой статьи, а таблицы наблюдений все чаще публикуются отдельно в виде файлов - приложений, а не тексте статьи.

Последнее "бумажное" издание ОКПЗ вышло в 1985-1987гг., и к нему регулярно публикуются дополнения в журнале "Information Bulletin on Variable Stars" ("Информационный бюллетень по переменным звездам", Будапешт, Венгрия), который является официальным изданием Международного астрономического союза. В последние годы этот бюллетень (обычно объемом до 2 или 4 страниц) принимает результаты исследований переменных звезд, полученных только по высокоточным ПЗС или фотоэлектрическим наблюдениям, однако, не принимаются более статьи на основе фотографических или визуальных оценок блеска. Краткие сообщения об открытиях новых переменных звезд группируются в каждый сотый номер с указанием авторов только внутри сообщения. Несмотря на сжатый научный характер информации, это издание "отпугивает" любителей малодоступностью информации о самих авторах открытий.

Существуют еще множество журналов в разных странах (Journal of the AAVSO (США); Journal of the British Astronomical Association, The Astronomer (Великобритания); Bulletin de l"AFOEV (Франция); BAV Rundbrief (Германия); BBSAG (Швейцария); GEOS (Италия)) и др., которые публикуют результаты наблюдений переменных звезд и иногда других астрономических объектов.

Для того, чтобы попытаться объединить любителей и профессионалов, несколько лет назад был организован международный "Open European Journal on Variable Stars" ("Открытый европейский журнал о переменных звездах"), официально зарегистрированный в Чехии. Журнал публикует на английском языке результаты ПЗС, фотоэлектрических и реже фотографических наблюдений переменных звезд. Статьи рецензируются 7 членами редколлегии, и статья публикуется (часто после доработки и учета замечаний рецензентов) при наличии более 70% голосов. В журнале обычно публикуются более подробные исследования звезд, чем в других журналах. Члены редколлегии представляют не только европейские страны (Чехия, Словакия, Швейцария, Италия, Германия, Украина), но и США. А публикуют свои результаты также ученые Кореи, США, Аргентины, Австралии и других неевропейских стран.

Однако, самыми быстрыми по скорости публикаций являются электронные циркуляры, рассылаемые некоторыми обществами. Наиболее используемыми являются циркуляры IAU, AAVSO, CBA (США), а особенно японский "VSNET" ("Сеть переменных звезд"), который подразделяется на более десятка циркуляров по интересом (chat - обсуждение; alert - срочное сообщение; campaign-dn - кампании по карликовым новым, campaign-ip - кампании по промежуточным полярам, obs - таблицы наблюдений и т.д.). Особенностью электронных циркуляров является скорость - они доходят до подписчиков за несколько секунд, со скоростью электронной почты. Однако, лишь некоторые из циркуляров оформлены в виде статей. В основном, они содержат краткие сообщения об открытиях непериодических явлений в уже известных звездах (вспышки, ослабления блеска, возникновение и прекращение временных квазипериодических или периодических изменений), и, существенно реже, открытиях новых переменных звезд. Такие сообщения информируют других потенциальных наблюдателей, которые могут своевременно корректировать программу своих наблюдений и продолжать наблюдения на разных долготах.

Во избежание недоброкачественных рассылок посторонними авторами, письма от авторов посылаются одному из "членов редколлегии", который может отредактировать и послать сообщение от своего имени с указанием автора наблюдений или открытий. Наиболее активным участникам дается право самим посылать свои сообщения для срочности. Это наиболее быстрый способ общения, поскольку информация об открытии (новой переменной звезды, вспышки, изменения характера переменности, появление и исчезновение сверхгорбов) доходит до адресатов практически мгновенно, и каждый наблюдатель может принять для себя решение о том, наблюдать ли ему ранее запланированные звезды или навести свой телескоп на звезду, именно сегодня (и, может быть, в несколько последующих ночей) показывающую интересное поведение.

Следует отметить, что такие сообщения от любителей используют и профессионалы. Есть специальный термин "target of opportunity" ("цель от события") при наблюдениях на больших наземных телескопах или даже космических телескопах. При получении наблюдательного времени, есть только некоторая вероятность, что произойдет в звезде то или иное событие (напр., вспышка). Поэтому заявка подается на несколько потенциально интересных объектов. А вот на какой из них наводить телескоп - зависит от состояния объекта. Поэтому профессионалы направляют информацию в электронные циркуляры, доступные любителям с хорошими телескопами. Обычно ее называют "Call for observations" ("приглашение к наблюдениям"), где описывают, чем та или иная звезда интересна, и приглашают сообщать срочно в случае обнаружения начала вспышки и присылать наблюдения в последующем.

Как уже отмечалось, звезда получает официальное название, как переменная, только после занесения в "Общий каталог переменных звезд". Для более быстрого централизованного обозначения, активно используется "Variable Stars indeX".

Наличие нескольких взаимодополняющих журналов способствует свободе выбора и созданию "индивидуальности" каждого из них. Еще раз отметим, что при публикации следует придерживаться как правил журнала, так и достижения необходимого минимума информации. Например, при открытии следует указывать хотя бы необходимо минимальные параметры, которые вносятся в "Общий каталог переменных звезд" - координаты; пределы изменения блеска с указанием фотометрической системы; тип переменности; для периодических звезд - период и начальную эпоху (максимум для пульсирующих звезд и минимум для затменных), асимметрию M-m для пульсирующих звезд (отношение интервала времени от минимума до ближайшего максимума к периоду в процентах) или ширину минимума D для затменных двойных звезд (отношение продолжительности минимума к периоду в процентах). Именно такой стиль характерен для журнала "Переменные звезды. Приложение" и каждого сотого номера "Information Bulletin on Variable Stars".

Более полезным для других авторов, которые, возможно, захотят использовать опубликованные данные с своими собственными, является стиль добавления карты окрестностей с указанием звезд сравнения, их характеристик (координаты, названия по каталогам, блеск в разных фотометрических системах), а также таблиц исходных наблюдений. В былые времена таблицы значений блеска публиковали в печатном виде в журналах. В последние пару десятилетий большинство журналов переходит на смешанную "бумажно-электронную" форму, полностью публикуя статьи в электронном виде и распечатывая лишь небольшой тираж, а приложения (таблицы наблюдений и их результатов) публикуя лишь в электронном виде. Такой подход позволяет публиковать очень длинные таблицы. Но, если кому-то надо их использовать (например, чтобы применить другой метод математической обработки), то удобнее использовать готовый файл, чем сканировать и распознавать цифры из напечатанного журнала. Такой стиль используется в наиболее престижных журналах "The Astrophysical Journal", "Astronomy and Astrophysics" и др. а также, в специализированных журналах по переменным звездам IBVS и особенно OEJV.

pochta. ru/ Gamow-2010-175-177- Virnina. pdf - статья с характеристиками 32 новых переменных звезд, которые открыла в Одессе, которые желательно продолжать наблюдать.

http:// asd. gsfc. nasa. gov/ Koji. Mukai/ iphome/ - сайт по промежуточным полярам

ftp://ftp.aavso.org/public/calib/ - многоцветные BVRI стандарты звездных полей Arne Henden

Переменные звезды – одно из наиболее любопытных явлений на небе, доступное для наблюдений невооруженным глазом. Мало того, здесь есть простор для научной деятельности простого любителя астрономии, и есть даже возможность совершить открытие. Переменных звезд сегодня известно очень много, и наблюдать за ними довольно интересно.

Переменные звезды – это звезды, со временем меняющие свою яркость, то есть блеск. Конечно, этот процесс занимает какое-то время, а не происходит буквально на глазах. Однако если периодически наблюдать за такой звездой, изменения её блеска станут отчетливо заметны.

Причинами изменения яркости могут быть разные причины, и в зависимости от них все переменные звезды поделены на разные типы, которые рассмотрим ниже.

Как открыли переменные звезды

Всегда считалось, что яркость звезд – нечто постоянное и незыблемое. Вспышка или просто появление звезды с древних времен относили к чему-то сверхъестественному и это явно имело какой-то знак свыше. Все это можно легко увидеть по тексту той же Библии.

Однако и многие века назад люди знали, что некоторые звезды все-таки могут менять свою яркость. Например, бета Персея не зря названа Эль Гулем (сейчас она называется Алголем), что в переводе означает не что иное, как «звезда дьявола». Названа она так из-за своего необычного свойства менять яркость с периодом чуть меньше 3 суток. Эту звезду как переменную открыл в 1669 году итальянский астроном Монтанари, а в конце XVIII века изучал английский любитель астрономии Джон Гудрайк, и он же 1784 году открыл вторую переменную того же типа – β Лиры.

В 1893 году в обсерваторию Гарварда пришла работать Генриетта Льюит. Её задачей было измерение яркости и каталогизация звезд на фотопластинках, накопленных в этой обсерватории. В итоге Генриетта за 20 лет обнаружила более тысячи переменных звезд. Особенно хорошо она исследовала пульсирующие переменные звёзды – цефеиды, и сделала некоторые важные открытия. В частности, она открыла зависимость периода цефеиды от ее яркости, что позволяет точно определять расстояние до звезды.

Генриетта Льюитт.

После этого, с бурным развитием астрономии, были открыты тысячи новых переменных.

Классификация переменных звёзд

Все переменные звёзды меняют свой блеск по разным причинам, поэтому была разработана классификация по этому признаку. Сначала она была довольно простой, но по мере накопления данных все более усложнялась.

Сейчас в классификации переменных звезд выделено несколько больших групп, каждая из которых содержит в себе подгруппы, куда относятся звезды с одинаковыми причинами переменности. Таких подгрупп очень много, поэтому коротко рассмотрим основные группы.

Затменно-переменные звёзды

Затменно-переменные, или просто затменные переменные звезды меняют свою яркость по очень простой причине. На самом деле они представляют собой не одну звезду, а двойную систему, притом довольно тесную. Плоскость их орбит расположена таким образом, что наблюдатель видит, как одна звезда закрывает собой другую – происходит как-бы затмение.

Если бы мы находились немного в стороне, то ничего подобного не смогли бы увидеть. Также, возможно, существует множество таких звезд, но мы не видим их как переменные, потому что плоскость их орбит не совпадает с плоскостью нашего взгляда.

Видов затменных переменных звезд также известно немало. Один из самых известных примеров – Алголь, или β Персея. Эта звездабыла открыта итальянским математиком Монтанари в 1669 году, а исследовал её свойства Джон Гудрайк, английский любитель астрономии, в конце XVIII века. Звезды, образующие эту двойную систему, нельзя увидеть по отдельности – они расположены настолько тесно, что период обращения их составляет всего 2 суток и 20 часов.

Если посмотреть на график изменения блеска Алголя, то можно увидеть в середине небольшой провал – вторичный минимум. Дело в том, что одна из компонент ярче (и меньше), а вторая – более слабая (и больше по размерам). Когда слабая компонента закрывает яркую, мы видим сильное падение блеска, а когда яркая закрывает слабую, падение блеска не очень выражено.

В 1784 году Гудрайк открыл другую затменную переменную – β Лиры. Её период составляет 12 суток 21 час и 56 минут. В отличие от Алголя, график изменения блеска у этой переменной более плавный. Дело в том, что здесь двойная система очень тесная, звезды настолько близко друг к другу, что имеют вытянутую, эллиптическую форму. Поэтому мы видим не только затмения компонент, но и изменения яркости при повороте эллиптических звезд широкий или узкой стороной. Из-за этого изменение блеска здесь более плавное.

График изменения блеска β Лиры.

Еще одна типичная затменная переменная – W Большой Медведицы, открытая в 1903 году. Здесь на графике виден вторичный минимум почти такой же глубины, как и основной, а сам график плавный, как у β Лиры. Дело в том, что здесь компоненты практически одинаковы по размерам, также вытянуты, и настолько тесно расположены, что их поверхности почти соприкасаются.

Бывают и другие типы затменных переменных звезд, но они встречаются реже. Также сюда относятся эллипсоидальные звезды, которые при вращении поворачиваются к нам то широкой, то узкой стороной, из-за чего их блеск меняется.

Пульсирующие переменные звёзды

Пульсирующие переменные звезды – большой класс объектов такого рода. Изменения блеска происходит из-за изменения объема звезды – она то расширяется, то снова сжимается. Происходит это из-за нестабильности равновесия между основными силами – гравитацией и внутреннего давления.

При таких пульсациях происходит увеличение фотосферы звезды и увеличение площади излучающей поверхности. Одновременно изменяется температура поверхности и цвет звезды. Блеск, соответственно, также меняется. У некоторых типов пульсирующих переменных блеск меняется периодически, а у некоторых нет никакой стабильности – их называют неправильными.

Первой пульсирующей звездой была Мира Кита, открытая в 1596 году. Когда её блеск достигает максимума, её можно хорошо видеть невооруженным глазом. В минимуме же требуется хороший бинокль или телескоп. Период блеска Миры составляет 331.6 суток, а подобные звезды называют миридами или звездами типа ο Кита – их известно несколько тысяч.

Другой широко известный тип пульсирующих переменных – цефеиды, названных в честь звезды такого типа Ϭ Цефея. Это гиганты с периодами от 1.5 до 50 суток, иногда больше. Даже Полярная звезда принадлежит к цефеидам с периодом почти 4 суток и с колебаниями блеска от 2.50 до 2.64 зв. величины. Цефеиды также делятся на подклассы, а наблюдения их сыграли немалую роль в развитии астрономии в целом.

Пульсирующие переменные типа RR Лиры отличаются быстрым изменением блеска – их периоды составляют менее суток, а колебания в среднем достигают одной звездной величины, что позволяет легко наблюдать их визуальным методом. Этот тип переменных также разделен на 3 группы, в зависимости от асимметрии их графика блеска.

Еще более короткие периоды у карликовых цефеид – это еще один вид пульсирующих переменных. Например, CY Водолея имеет период 88 минут, а SX Феникса – 79 минут. График их блеска похож на график обычных цефеид. Они представляют большой интерес для наблюдений.

Существует еще немало видов пульсирующих переменных звёзд, хотя они не так распространены или не очень удобны для любительских наблюдений. Например, звезды типа RV Тельца имеют периоды от 30 до 150 суток, и на графике блеска имеются некоторые отклонения, отчего звезды этого типа относят к полуправильным.

Неправильные переменные звёзды

Неправильные переменные звезды также относятся к пульсирующим, но это большой класс, включающий множество объектов. Изменения их блеска очень сложные, и зачастую их невозможно предвидеть заранее.

Однако у некоторых неправильных звезд в долговременной перспективе удается выявить периодичность. При наблюдениях в течении нескольких лет, например, можно заметить, что неправильные колебания складываются в некую среднюю кривую, которая повторяется. К таким звездам, например, относится Бетельгейзе – α Ориона, у которого поверхность покрыта светлыми и темными пятнами, что и объясняет колебания блеска.

Неправильные переменные звезды недостаточно изучены и представляют большой интерес. На этом поле еще предстоит сделать много открытий.

Как наблюдать переменные звёзды

Чтобы заметить изменения блеска звезды, используются . Самый доступный – визуальный, когда наблюдатель сравнивает блеск переменной звезды с блеском соседних звезд. Затем на основе сравнения вычисляется блеск переменной и по мере накопления этих данных строится график, на котором отчетливо заметны колебания яркости. Несмотря на кажущуюся простоту, определение яркости на глаз можно производить достаточно точно, и такой опыт приобретается довольно быстро.

Методов визуального определения блеска переменной звезды существует несколько. Самые распространенные из них – метод Аргеландера и метод Нейланда-Блажко. Есть и другие, но эти довольно просты для освоения и дают достаточную точность. Более подробно про них расскажем в отдельной статье.

Достоинства визуального метода:

  • Не требуется никакого оборудования. Для наблюдения слабых звезд может понадобиться бинокль или телескоп. Звезды с блеском в минимуме до 5-6 зв. величины можно наблюдать невооруженным глазом, их тоже довольно много.
  • В процессе наблюдения происходит реальное «общение» со звездным небом. Это дает приятное ощущение единства с природой. Кроме того, это вполне научная работа, которая приносит удовлетворение.

К недостаткам можно отнести все-таки неидеальную точность, из-за чего возникают погрешности в отдельных наблюдениях.

Другой метод оценки блеска звезды – с применением аппаратуры. Обычно делается снимок переменной звезды с окрестностями, а затем по снимку можно точно определить яркость переменной.

Стоит ли астроному-любителю заниматься наблюдениями переменных звезд? Однозначно стоит! Ведь это не только одни из самых простых и доступных для изучения объектов. Эти наблюдения имеют и научную ценность. Профессиональные астрономы просто не в состоянии охватить регулярными наблюдениями такую массу звезд, а для любителя здесь даже открывается возможность внести свой вклад в науку, и такие случаи бывали.

– это звезды, которые формируются или находятся на ранней стадии эволюции. К ним относятся звезды типа Т Тельца, демонстрирующие нерегулярные изменения блеска и часто окутанные облаками пыли и газа.

Переменные Хаббла – Сэндиджа,

массивные звезды большой светимости с нерегулярной эмиссией. В эту группу входят звезды максимальной светимости нашей и соседних галактик. Возраст таких звезд всего несколько миллионов лет, а их массы лежат в диапазоне от 60 до 200 масс Солнца. В нашей Галактике такими звездами являются Р Лебедя и h Киля, интенсивно теряющие массу в виде звездного ветра.

Пульсирующие переменные

периодически расширяются и сжимаются, а их блеск синхронно усиливается и ослабляется. Среди пульсирующих переменных наиболее известны цефеиды, названные так по прототипу – звезде d Цефея. Изменение цвета, светимости и скорости движения поверхностного слоя у классической цефеиды происходит с определенным периодом. Чем больше этот период, тем больше средняя светимость звезды. Поскольку видимый блеск звезды меняется обратно пропорционально квадрату расстояния до нее, то, измерив блеск и определив по периоду светимость цефеиды, можно вычислить расстояние до нее. Классические цефеиды имеют массы порядка 5 масс Солнца и возраст от нескольких миллионов до 100 млн. лет.

Пульсирующие переменные звезды типа b Цефея изменяют, вероятно, не столько свой размер, сколько форму. Они значительно моложе Солнца.

Некоторые пульсирующие переменные звезды очень стары: их возраст доходит до 15 млрд. лет, а массы составляют от 0,6 до 2 масс Солнца. Например, это переменные типа RR Лиры с периодами менее суток и светимостью от 50 до 100 солнечных. Сюда же относятся цефеиды старого населения Галактики (переменные типа W Девы), обнаруженные в шаровых скоплениях. Их периоды сравнимы с периодами классических цефеид, хотя светимость заметно слабее и ведут они себя немного иначе. Вероятно, родственны этой группе и звезды типа d Щита, которые часто называют «карликовыми цефеидами». См . ЗВЕЗДЫ.

Четвертая группа пульсирующих переменных состоит из холодных старых звезд с обширными оболочками. В эту группу входят мириды – полуправильные и долгопериодические переменные типа Миры Кита. Полуправильные звезды являются сверхгигантами с массами от 8 до 40 солнечных масс. На конечной стадии эволюции у них наблюдаются нерегулярные пульсации, как это видно на примерах Бетельгейзе и Антареса. Типичные периоды мирид составляют от 200 до 450 сут, а светимости достигают 10 000 солнечных; диапазон их масс от 0,8 до 3 солнечных. Динамика их пульсаций усложняется развитием ударных волн. Мириды образуют непрерывную последовательность с переменными ОH/IR, в спектрах которых видны гидроксильные (OH) эмиссионные линии, а сами звезды так холодны, что в основном излучают в инфракрасном диапазоне (IR). Это умирающие звезды, окруженные огромными газо-пылевыми оболочками.

Затменные переменные.

Наиболее известными системами, состоящими из белого карлика и близкого к нему спутника, являются классические новые звезды, карликовые новые и симбиотические переменные. Блеск классических новых может усилиться в миллион раз, а затем быстро ослабеть. Карликовые новые усиливают свой блеск от 6 до 200 раз, а ослабление происходит за время от 10 до сотен дней. Симбиотическая звезда – это система, состоящая из холодной красной звезды и ее маленького горячего спутника, причем вся система окутана облаком ионизованного газа.

Сверхновые.

Самыми замечательными переменными звездами считаются сверхновые, которые в момент вспышки становятся ярче целой галактики. В нашей Галактике сравнительно недавно наблюдались вспышки сверхновых: породившая Крабовидную Туманность вспышка 1054 года; Сверхновая Тихо (1572); Сверхновая Кеплера (1604). Это мощные взрывы, почти полностью разрушающие звезду. Различают два типа сверхновых. Сверхновые I типа наблюдаются в звездных системах, лишенных молодых звезд (в эллиптических галактиках), и в максимуме достигают светимости 6Ч 10 9 солнечных. Вероятно, это взрываются белые карлики, на которые в двойных системах происходит аккреция вещества с соседней звезды до тех пор, пока масса карлика не превысит предел Чандрасекара (1,44 массы Солнца). Сверхновые II типа образуются при взрыве молодых массивных звезд (15–30 масс Солнца) и достигают светимости 4Ч 10 8 солнечной. Сверхновые обоих типов производят в процессе взрыва химические элементы тяжелее железа и выбрасывают их в межзвездное пространство. Эти взрывы могут стимулировать рождение звезд следующего поколения; возможно, так родилась и Солнечная система. МЕЖЗВЕЗДНОЕ ВЕЩЕСТВО; ЗВЕЗДЫ; СОЛНЕЧНАЯ СИСТЕМА.

Спектральные переменные.

Это относительно молодые звезды с температурой поверхности 10 000–15 000 К. Их блеск меняется слабо, но в процессе вращения звезды в ее спектре наблюдаются сильные изменения, указывающие, что в разных областях ее поверхности сконцентрированы различные металлы. У этих звезд мощное (более 30 кГс) переменное магнитное поле. См . ЗВЕЗДЫ.

Звезды типа UV Кита.

Это относительно молодые звезды-карлики (типа Солнца), вспышки которых похожи на солнечные, но более мощные. На небольших участках их поверхности существуют сильные магнитные поля. См . СОЛНЦЕ.

Звезды типа R Северной Короны.

Это старые звезды, богатые углеродом. Их ровное свечение иногда прерывается неожиданным ослаблением блеска во много раз, а затем восстанавливается. Вероятно, в атмосфере звезды время от времени образуются облака сажи, поглощающие ее свет, которые затем рассеиваются.

Затменно-переменные звезды иногда называют геометрическими , подразумевая при этом, что их переменность является следствием геометрического расположения компонентов двойной системы звезд относительно наблюдателя, но никак не зависит от физических процессов, происходящих в самих х. Не вполне разделяя такую точку зрения, отметим все же, что этот класс объектов весьма многочисленен – к настоящему времени обнаружено более 4000 затменно- .

Переменные звезды обозначаются латинскими прописными буквами в каждом созвездии в порядке их обнаружения за исключением звезд, обозначенных греческими буквами или имеющими собственные имена, например, Алголь, δ Цефея и т.п. Первая переменная в каком-либо созвездии обозначается буквой R, вторая - буквой S, затем T, и т.д. до буквы Z . Затем переменные обозначаются комбинациями всех этих букв от RR до ZZ . Следующие переменные обозначаются комбинациями букв от A до Q (AA→ QZ ). Буква J из обозначений исключается, чтобы не было путаницы с буквой I. Когда все 334 буквенные комбинации оказываются исчерпанными, используется сквозная цифровая нумерация звезд (начинается с числа 335), перед которой ставится указание переменности V (variable - переменный).

Самую многочисленную группу составляют так называемые физические переменные звезды. К настоящему времени их обнаружено более 50000, однако практически каждая на определенной становится физически нестационарным объектом.

Физические переменные или – звезды, изменяющие видимую (и действительную) яркость в результате происходящих в их недрах физических процессов. Кроме изменения яркости, у таких наблюдаются вариации размеров, температуры поверхности, химического состава атмосферы и других параметров.

По виду кривой блеска и по физическим процессам, приводящим к вариациям видимой яркости, физические переменные звезды подразделяются на два класса: пульсирующие переменные звезды, новоподобные, новые и звезды.

Пульсирующими называются звезды, у которых изменения блеска вызван пульсациями, то есть периодическими (квазипериодическими) изменениями радиуса R физической ; эти изменения поддерживаются внутренними источниками энергии звезды и возбуждаются тепловым потоком, идущим из внутренних областей звезды к наружным. Автоколебания сопровождаются изменениями температуры T поверхности звезды и, следовательно, общего потока излучения Ф, видимой m и абсолютной M звездными величинами, цвета и спектра.

По виду кривой блеска и продолжительности пульсаций пульсирующие переменные звезды подразделяются на несколько типов. Рассмотрим некоторые из них.

Правильная - пульсирующая , изменения блеска которой носят строго периодический характер, а может быть представлена сравнительно простой функцией m(t), где m - видимая звездная величина звезды на момент наблюдения t. К правильным переменным относят звезды типа δ Цефея, W Девы, RR Лиры, o Кита и др.

Переменная типа RR Лиры (лирида, RR ) - правильная пульсирующая с периодом изменения блеска (видимой яркости) P ≈ 0,05 d ÷ 1,2 d ; гигант A - F; средняя (медианная) M ср ≈ 0 m ÷ -1 m , L ~ 10 2 .

Медианная M определяется как среднее из абсолютной величины правильной переменной в минимуме M min и максимуме M max блеска:

M ср = (M min + M max )/2. (33)

Лириды занимают узкий участок на диаграмме Г-Р в области гигантов, чем обусловлены сравнительно небольшие различия звезд этого класса. Массы звезд этой группы переменных M ~ 2÷ 3 × М ⊙ , радиусы R ~ 3÷ 5 × R ⊙ . Средняя плотность лирид r ≈ 10 -2 г/см 3 (сравни: r ⊙ ≈ 1,4 г/см 3).


Рисунок 7.

Лириды (рис. 7а) имеет несимметричную форму: блеск звезды сравнительно быстро нарастает, затем наблюдается медленный спад. Амплитуда изменения видимой звездной величины А ≈ 1 m ,0÷ 2 m Δ R ≈ 5%), поверхностная температура (Δ T ~ 1000К), спектр (от A до F ) звезды.

Переменные этого типа получили название от RR созвездия Лира (RR Лиры), которую можно наблюдать как звезду с m v = +7 m ,5, меняющую свой блеск с m vmax = + 7 m ,06 до m vmin = +8 m ,12 с периодом P = 13 h 36 m 14 s ,9. Во время пульсации RR Лиры меняет от A 2 в максимуме блеска до F 1 в минимуме блеска. Наблюдаются более 6700 лирид, причем все они относятся к сферической составляющей Галактики и в значительном числе обнаруживаются в шаровых звездных скоплениях. Эти переменные звезды называют иногда короткопериодическими цефеидами.

Типа δ Цефея (цефеида DCEP , C δ ) - правильная пульсирующая с периодом изменения блеска (видимой яркости) P ≈ 2 d ÷ 70 d ; гигант или сверхгигант F или G; средняя (медианная) M ср ≈ -2 m ÷ -6 m . Массы звезд этой группы переменных M ~ 3 ÷ 16 × М ⊙ , радиусы R ~ 10 ÷ 150 × R ⊙ . Средняя плотность цефеид ρ ≈ 10 -5 г/см 3 (ср.: ρ ⊙ ≈ 1,4 г/см 3).

Так же как и у лирид, цефеиды (рис. 7 b ) имеет несимметричную форму: блеск звезды сравнительно быстро нарастает, затем наблюдается медленный спад. Амплитуда изменения видимой звездной величины А = 0 m ,1 ÷ 2 m ,0. Одновременно с изменением блеска меняется радиус (Δ R ≈ 10 ÷ Δ T > 1000К), спектр (от F до K ) звезды.

Типичный представителем этого класса является четвертая по яркости созвездия Цефей - δ Цефея, переменность которой была обнаружена в 1784 г Дж. Гудрайком. Эта сверхгигантская относится к классу светимости Ib , меняет блеск с периодом P = 5 d 08 h 47 m 29 s ,7 и амплитудой A = 0 m ,9 от m v = +3 m ,5 до m v = +4 m ,4. Во время пульсаций изменяется спектр от G 2 до F 5 и температура звезды от T ≈ 5500К до T ≈ 7000К. Радиус δ Цефея R ≈ 50 × R ⊙ меняется в пределах ± 7 × 10 5 км. Этот сверхгигант находится от нас на расстоянии r ≈ 330 (около 1000 св.г.), имеет абсолютную звездную величину M v = –4 m и входит в состав кратной (тройной) системы звезд.

Пожалуй, наиболее близкой к Солнцу цефеидой является Полярная (a Малой Медведицы), сверхгигант F 7, от которого свет идет около 470 лет (r ≈ 140 ). В начале ХХ в . сотрудница Гарвардской обсерватории (США) Г. Ливитт приступила к изучению в Малом Магеллановом Облаке и к 1912 г . обнаружила почти прямолинейную зависимость между видимыми звездными величинами m в максимуме (и минимуме) блеска и логарифмом периода изменения блеска lgP для 23 правильных переменных звезд типа δ Цефея и RR Лиры. Так как исследованные Ливитт звезды находятся от нас практически на одном расстоянии, то открытие Ливитт означало, что светимости L правильных связаны почти линейной зависимостью с периодами изменения их блеска. В двадцатых годах трудами Э.Герцшпрунга, Г.Рессела и Х.Шепли удалось оценить нуль-пункт этой зависимости, то есть определить значение средней светимости L (или средней абсолютной звездной величины M ср) для правильных конкретного периода. В настоящее время для определения средней абсолютной звездной величины M ср по наблюденному значению периода P изменения блеска правильной (звезды типа δ Цефея) используется соотношение:

М v ср = - 1,01 - 2,88 × lgP d . (34).

Типа W Девы (цефеида CW ) - правильная пульсирующая с периодом изменения блеска (видимой яркости) P ≈ 2 d ÷ 70 d ; гигант F или G; средняя M ср ≈ 0 m ÷ -3 m . Звезды этого типа отличаются от классических цефеид не только тем, что их абсолютные звездные величины на 1 m ,5 ÷ 2 m ,0 больше абсолютных звездных величин C δ , но и своим распределением в Галактике. Если цефеиды C δ сосредоточены главным образом вблизи плоскости Галактики (цефеиды плоской составляющей Галактики), то цефеиды CW встречаются в равной мере во всем объеме Галактики (цефеиды сферической составляющей Галактики). Для переменных CW, как и для всех правильных , характерна строгая связь между периодом изменения блеска P и средним значением абсолютной звездной величины M ср ( ю L ) звезды.

Переменные звезды типа δ Цефея и W Девы называют также долгопериодическими цефеидами. Обнаружено более 850 долгопериодических цефеид – членов Галактики.

Лириды и цефеиды, будучи гигантскими и сверхгигантскими ми, видны с огромных расстояний. С помощью крупных телескопов эти звезды можно обнаружить в других галактиках, отстоящих от нашей на 3-5 М . Первые определения расстояний до ближайших галактик, в частности, до галактики Андромеды (М31) были сделаны с помощью диаграммы “период- ” (рис. 8).



Рисунок 8.

Диаграмма, представляющая зависимость между периодом P изменения блеска правильных типа δ Цефея, W Девы (цефеиды) и типа RR Лиры (лириды) и медианным значением абсолютной звездной величины M ср (ил L) для этих звезд, называется диаграммой “период- ”.

По оси абсцисс диаграммы откладываются значения lgP правильной переменной, по оси ординат - медианное значение абсолютной звездной величины M этой звезды. Для определения расстояний эта диаграмма используется вместе с соотношениями типа (34), полученными из наблюдений для звезд различного типа переменности.

Если где-либо наблюдается правильная , то по кривой блеска устанавливается тип переменности и определяется период переменности P . Пусть, например, это будет типа δ Цефея с периодом P = 30 d . Входя по этому значению периода в диаграмму “период- ” или используя соотношение (34), определяем среднюю абсолютную звездную величину звезды: M ср = -5 m ,35. Так как переменная наблюдаема, то из наблюдений определяется ее средняя видимая звездная величина m ср : например, m ср = + 18 m , 37. Воспользуемся соотношением (18) для модуля расстояний и определим расстояние до звезды в ах. Это расстояние оказывается равным r ≈ 5,5 × 10 5 или π = 1,6 × 10 -6 . π , определенный таким образом, называется цефеидным параллаксом.

Долгопериодическая типа o Кита (мира, мирида, М) - пульсирующая с периодом изменения блеска P ≈ 70 d ÷ 700 d ; гигант M , C или S ; средняя M ср ≈ -3,5 m ÷ 0 m . Массы звезд этой группы переменных M ~ 5 ÷ 10 × М ⊙ , радиусы R > 40 × R ⊙ . Средняя плотность мирид ρ ≈ 10 -5 ¸ 10 -9 г/см 3 .

Мириды представлена на рис. 7с. Кривая имеет несимметричную форму с амплитудой изменения видимой звездной величины А = 2 m ,5 ÷ 10 m ,0, то есть блеск мириды во время пульсации может измениться почти в 10000 раз! Амплитуда и период изменения блеска мириды может меняться на 10% и более. Одновременно с изменением блеска меняется радиус (Δ R ~ 15%), поверхностная температура (Δ T ~ 500К) и спектр (от М0 к более позднему подклассу) звезды. Особенностью спектров мирид является наличие , в частности, ярких линий излучения водорода и некоторых других химических элементов, что свидетельствует о бурных процессах, происходящих в холодных атмосферах этих звезд.

Этот класс получил название от звезды o Кита (o - омикрон). Астроном Д. Фабрициус в 1596 г обратил внимание на то, что эта в течение некоторого времени увеличивала свою яркость. Затем блеск звезды уменьшался до тех пор, пока она не перестала быть наблюдаемой. Фабрициус дал звезде имя Мира (удивительная, дивная). И действительно, эта удивительная является гигантом M 7 eIII (e – эмиссионная), которая с периодом 332 d ,3 меняет свой видимый блеск почти в 1600 раз от m v = +2 m ,0 до m v = +10 m ,1, время от времени становясь недоступной для наблюдений невооруженным глазом. Мира находится от нас на расстоянии r ≈ 140 , имеет абсолютную звездную величину M ≈ -2 m ,7, а в максимуме блеска сияет как 1000 Солнц. Мира в десять раз массивнее (М ≈ 10 × М ⊙ ) и в 400 раз больше (R ≈ R ⊙ ) Солнца, так что средняя плотность звезды ничтожно мала: ρ ≈ 10 -8 г/см 3 . Если бы Мира находилась на месте Солнца, то орбита Марса располагалась бы внутри ее фотосферы. Мира является одной из компонент четырехкратной системы звезд. Со времен Фабрициуса обнаружено более 6500 мирид, большинство которых недоступно для наблюдений невооруженным глазом. Судя по вариациям периода и амплитуды мирид, эти звезды располагаются в классификации между правильными и полуправильными пульсирующими ми.

Полуправильная (SR ) - пульсирующая , изменения блеска которой не имеют строго периодического характера, а отличается существенными изменениями видимой звездной величины m и амплитуды A за относительно длительные промежутки времени – от нескольких десятков до нескольких сотен суток.

Эти гиганты и сверхгиганты поздних M 0 ÷ M 8 с абсолютными звездными величинами M ≈ -4 m ÷ +1 m имеют амплитуду изменения блеска A ≈ 0 m ,3 ÷ 2 m ,5 с несколькими периодами, накладывающимися один на другой. Примером таких звезд может служить красная полуправильная m Цефея, которой приведена на рис. 7 d . Сверхгигантская M 2 Ia проявляет циклические, то есть непостоянные по периоду, изменения блеска. Как показывают исследования, здесь накладываются друг на друга три колебания с периодами около 90, 600 и 4300 суток. Пунктиром отмечена долгопериодическая составляющая колебания блеска. К настоящему времени обнаружено более 4300 полуправильных переменных как типа µ Цефея, так и других типов.

Неправильная (L ) - пульсирующая , по кривой блеска которой невозможно установить какой-либо закономерности в пульсациях.

Причина неправильных пульсаций пока достоверно не установлена, однако число обнаруженных звезд такого типа довольно велико – около 3600 звезд. Примером может служить SV Тельца, которой приведена на рис. 7 e . долгое время может сохранять неизменным максимальный блеск, затем ее блеск за относительно короткий промежуток времени ослабевает в несколько тысяч раз, после чего возвращается в нормальное состояние. свидетельствует об отсутствии равновесия между процессами, ответственными за пульсации верхних слоев атмосферы звезды.

К особому типу относят пульсары.

Пульсар – правильная , период изменения яркости (блеска) которой во всех диапазонах электромагнитного излучения (от гамма излучения до радиоволн) постоянен с очень большой точностью, причем наблюдаемое изменение энергии излучения происходит импульсами с частотой от одного импульса до нескольких десятков и даже сотен импульсов в секунду – отсюда и название объекта «пульсар». Исследования показали, что пульсар является нейтронной звездой, быстро вращающейся вокруг своей оси и обладающей мощным магнитным полем (~ 10 12 Э); при соответствующей ориентации оси вращения относительно наземного наблюдателя проявляет себя как пульсар, причем период пульсаций является периодом вращения вокруг оси.

– с неправильными, непредсказуемыми изменениями блеска (видимой яркости) в пределах 0 m ,5 ÷ 6 m , причиной которых могут быть нестационарные взрывоподобные процессы умеренной силы (эрупции), протекающие в верхних слоях фотосферы звезды. с неправильными, непредсказуемыми быстрыми изменениями блеска в пределах нескольких звездных величин: - 2 m выше звезд главной последовательности соответствующих . в течение длительного промежутка времени может находиться в почти стационарном состоянии, после чего наблюдаются быстрые изменения блеска с амплитудами до 3 и более. Вокруг звезд наблюдаются яркие туманности, обширные оболочки, движение вещества в которых, по-видимому, и являются причиной переменности блеска. Возможно, это самые молодые образования среди звездного населения Галактики. Интересно, что наблюдаются группами, находящимися внутри обширных газопылевых туманностей. Эти группы получили название Т-ассоциации.

Типа FU Ориона (фуор) – , которая за несколько лет может увеличить блеск в сотни раз. Обладает сильным инфракрасным излучением. В спектре наблюдаются линии лития (Li ) – возможно, в недрах этих звезд еще не начался термоядерный синтез. Так FU Ориона при наблюдении в 1936 г изменила свою видимую звездную величину с +16 m до +10 m , через два года ее видимая звездная величина стала равной +11 m и в настоящее время незначительно меняется в ту или иную сторону.

Эруптивные звезды в значительном количестве наблюдаются в туманности Ориона, поэтому их часто называют Орионовыми .



Рисунок 9.

Особый класс нестационарных звезд составляют (рис. 9). Эти сверхмассивные объекты с массой M ≈ 15 ÷ 60 × M ⊙ и температурой на поверхности Т ≈ 5 × 10 4 К находятся, по-видимому, на промежуточной между стационарными ми O и нестационарными красными сверхгигантами. Сами явно нестационарны: в спектрах наблюдаются широкие эмис­сионные линии гелия (Не I и He II ), углерода (у WC-звезд), азота (у WN-звезд). Это свидетельствует о том, что из внешних областей звезды происходит выброс значительной массы вещества (до 10 -4 × M ⊙ в год), которое со скоростями до 1500 км/с “растекается” по межзвездному пространству. Изображенная на фотографии находится внутри своих газовых выбросов - эти выбросы образуют бело-голубой “пузырь”. Звездный ветер, дующий от звезды со скоростью ~ 3000 км/с, при сто новении с межзвездным газом образует ударную волну, энергия которой вызывает свечение газа. На рисунке хорошо видна неправильная волокнистая структура облаков межзвездного газа. Учитывая массу и скорость сбрасываемого звездой вещества, можно оценить время существования объекта в подобной стадии - оно не может превышать 10 4 ÷ 10 5 лет. Естественно, очень редки: на одну звезду этого типа приходится до 150 млн. звезд других классов. отнесены к спектральному классу W.

Сброс вещества, по-видимому, является обычным явлением на определенной стадии эволюции некоторых звезд. Наблюдаются объекты, за свой внешний вид получившие название планетарные туманности.

Планетарная туманность – система, состоящая из звезды (ядро туманности) и окружающей ее светящейся газовой оболочки (собственно туманность).

Ядро планетарной туманности – горячая голубая , спектр которой похож на спектр (W) или звезды O; температура поверхности ядра T ~ 10 5 К, L ~ 3 ÷ 3 × 10 4 L ⊙ ; дальнейшее остывание и сжатие этой звезды приводит к появлению белого карлика. Оболочка генетически связана с ядром; электронная температура оболочки T е ≈ 1,3 × 10 4 К, то есть газ оболочки полностью ионизирован. Типичная масса оболочки M ≈ 0,1 × M ⊙ , диаметр d ~ 0,1 ÷ 1 . Вся система возникает, возможно, на катастрофической красных гигантов и субгигантов.

На фотографии планетарной туманности M27 “Гантель” (рис. 10) хорошо видна внутренняя структура туманности, особенности которой позволяют сделать вывод о несимметричном сбросе вещества звездой. Туманность светится за счет двух механизмов: рассеяние излучения ядра и переизлучение жесткого ультрафиолетового излучения ядра атомами H и He, входящими в состав вещества туманности. Температура туманности