Биосфера закономерная часть космической организованности. Биосферы организованность. б) техническое и лабораторное обеспечение

  • 02.10.2020

Биосферой (греч. bios-жизнь, sphaira-шар) называют ту часть земного шара, в пределах которой существует жизнь, представляющую собой оболочку Земли, состоящую из атмосферы, гидросферы и верхней части литосферы, которые взаимно связаны сложными биохимическими циклами миграции вещества и энергии. Верхний предел жизни биосферы ограничен интенсивной концентрацией ультрафиолетовых лучей; нижний - высокой температурой земных недр (свыше 100° С). Крайних пределов ее достигают только низшие организмы - бактерии. В. И. Вернадский, создатель современного учения о биосфере, подчеркивал, что биосфера включает в себя собственно "живую пленку" Земли (сумму населяющих Землю в каждый данный момент живых организмов, "живое вещество" планеты) и область "былых сфер", очерченную распределением на Земле биогенных осадочных пород. Таким образом, биосфера - это специфическим образом организованное единство всего живого и минеральных элементов. Взаимодействие между ними проявляется в потоках энергии и вещества за счет энергии солнечного излучения. Биосфера является самой крупной (глобальной) экосистемой Земли - областью системного взаимодействия живого и косного вещества на планете. По определению В. И. Вернадского, "пределы биосферы обусловлены прежде всего полем существования жизни".[ ...]

Биосфера - геологическая оболочка Земли как планеты. Организованность ее. Живое вещество как ее геологическая функция. Астрономические условия ее существования неизменны в течение геологического времени. Лик Земли. Напор живого вещества (§ 33). Мы живем в конце ледникового периода. Его характеристика (§ 34--36). Материально-энергетический обмен биосферы с Космосом (§ 37). Вещество биосферы (§38,39) .[ ...]

Космос лепит лик Земли». В биосфере все главные организмы связаны со средой обитания и их деятельностью самоуправляемыми биологическими и геохимическими процессами.[ ...]

Биосфера представляет собой систему, т.е. единое целое, функционирующее благодаря взаимодействию определенным образом организованных элементов. Биосфера есть целостная система, выполняющая определенную программу и в своих собственных интересах стабилизирующая себя и окружающую среду и устраняющая-внешние и внутренние искажающие воздействия.[ ...]

Биосфера - сложная по составу, строению и организованности оболочка. Она включает все живые организмы, биогенные (уголь, нефть, известняк и др.), косное (в его образовании живое не участвует) и биокосное (создается с помощью живых организмов) вещества, а также вещество космического происхождения.[ ...]

В биосфере эволюция всегда происходит в направлении увеличения организации жизни. В принципе не исключается также вероятность эволюции в направлении разрушения достигнутого уровня организации, т.е. вытеснение менее организованными, но более агрессив-;.11лVI -(особями более организованных но менее агрессивных особей. Такой ход событий в биосфере, в частности, может происходить в результате увеличения размеров как живых организмов, так и их социальных структур и сообществ, что, как правило, сопровождается ростом конкурентоспособности. Однако рост размера приводит к уменьшению числа особей в популяции и, в конечном счете, к полной скор-релированности всех частей популяции и прекращению конкурентного взаимодействия и отбора. Сокращение числа независимо функционирующих особей в сообществе приводит к невозможности поддержания в скоррелированном состоянии синтеза и разложения органических веществ в сообществе. Такой процесс мог бы привести к полной дезорганизации и, в конечном итоге, к исчезновению жизни в биосфере.[ ...]

Вещество биосферы резко и глубоко неоднородно (§ 38): живое, косное, биогенное и биокосное, Живое вещество охватывает и перестраивает все химические процессы биосферы, действенная его энергия, по сравнению с энергией косного вещества, уже в историческом времени огромна. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени. Оно живет не случайно и независимо от биосферы, но есть закономерное проявление физико-химической ее организованности. Его образование и существование есть ее главная геологическая функция (ч. II).[ ...]

Строение биосферы связано с формой планеты. Радиальные движения. Средний верхний уровень биосферы не смещается от центра планеты в течение геологического времени (§ 79). Геологические оболочки и геосферы (§ 80). Биосфера и ее геосферы (§81). Астрономический характер геологических оболочек и геосфер (§ 82). Резкое физико-химическое различие смежных геологических оболочек и геосфер. Только одно свойство - тяготение - однозначно меняется к центру планеты, но меняется скачками. Термодинамические, фазовые, парагенетические и лучистые проявления оболочек и геосфер. Глубинно-планетное физическое состояние вещества глубин Земли. Особое значение термодинамических оболочек (§ 84). Организованность геологических оболочек и геосфер (§ 85). Геологическое значение радиусов геоида (§ 86, 87).[ ...]

Шипунов Ф. Я. Организованность биосферы. М.: Наука, 1980. 290 с.[ ...]

Иерархическая организованность биосистем иллюстрирует непрерывность и дискретность эволюции жизни. Сообщество не может существовать без поступления энергии и круговорота веществ. Экосистема нежизнеспособна без взаимосвязи с популяционными системами и биосферой. Человеческая цивилизация не может существовать вне мира природы.[ ...]

В.И.Вернадскому, ее организованность - это проявление упорядоченности Космоса, главное, но не единственное выражение которой представлено в строении и свойствах механизма земной коры и его центрального блока - биосферы. По Г.Лавлоку, гомеостаз Геи - ее внутреннее свойство. По В.Г.Горшкову, биосфера гомеостатична только в рамках условий дотехногенного голоцена и ей не свойственны другие устойчивые состояния.[ ...]

Значительная часть биосферы состоит из биокосных тел. Такими являются все скопления живых организмов: леса, поля, планктон, бентос, почвы и морские илы, все земные воды, кроме некоторых рассолов, но даже и в них, как например, в Мертвом море, микробная жизнь существует. Организованные биокосные тела занимают значительную часть по весу и по объему биосферы. Их остатки, после гибели организмов, их составляющих, образуют биогенные породы, которые образуют огромную часть стратисферы.[ ...]

Современная структура биосферы характеризуется "трогой организованностью, биологическим равновес:: « численности и взаимной адаптированностыо составляющих её организмов.[ ...]

По характеру воздействия на биосферу выбросы химических производств можно разделить на организованные и неорганизованные.[ ...]

Огромна и энергетическая роль биосферы. Жизнедеятельность всех живых организмов, включая человека, с точки зрения физики представляет собой работу, для осуществления которой требуется энергия. Но энергия солнечной радиации (а Солнце - единственный источник энергии для всех обитателей Земли) непосредственно использоваться не может: она лишь нагревает поверхность Земли и далее рассеивается. Для того чтобы энергия могла осуществлять работу, она должна быть трансформирована в какие-то иные формы и запасена, как говорят физики, против градиента. Именно эту функцию выполняют представители биоты, в частности преимущественно зеленые растения - фотосинтетики. Из школьного курса биологии известно, что в клетках зеленых растений происходит фотосинтез - процесс образования органического вещества из косной неживой материи под воздействием солнечной энергии, которая преобразуется в энергию химических связей. Именно этой трансформированной энергией и пользуются все живые организмы, именно продукция фотосинтеза обеспечивает человека необходимой пищей, одеждой, энергией, поскольку тот же каменный уголь - это солнечная энергия, аккумулированная в продуктах фотосинтеза растений прошлых геологических эпох. Растения обеспечивают организованность, упорядоченность биосферы, т. е. негэнтропируют энергию в органическом веществе. Поэтому при изучении курса физики студент особенно тщательно должен разобраться в сущности второго начала термодинамики, имеющего непосредственное отношение к охране окружающей среды и экологии, в соотношении понятий «энергия» и «энтропия».[ ...]

Физическое состояние всей ткани биосферы, таким образом, может оказаться очень далеким от исходного. Ход этого процесса управляем лишь до определенной грани, количественная характеристика которой выражается функциональным и территориальным соотношением природных систем различной степени организованности и сложности.[ ...]

Таким образом, важнейшими особенностями биосферы являются ее организованность и устойчивое динамическое равновесие. Организованность означает, что биосфера - не хаос разрозненных составляющих, а некоторое единое и связное целое.[ ...]

М.И. Будыко, проведя анализ процесса перехода биосферы в ноосферу, связал образование последней с достижением следующих этапов: 1 - человечество стало единым целым, научно-техни-ческая революция охватила всю планету; 2 - осуществилась коренная перестройка связи и обмена, ноосфера стала единым организованным целым, все части которого на различных уровнях действуют согласованно друг с другом; 3 - открыты принципиально новые источники энергии (ноосфера предусматривает коренную перестройку человеком окружающей природы, ему не обойтись без колоссальных источников энергии); 4 - достигнуты социальное равенство всех людей и подъем их благосостояния; 5 - возможность регулировать состояние биосферы в соответствии с потребностями человеческого общества.[ ...]

Например, можно говорить о термодинамическом уровне организованности биосферы, выражающемся в наличии двух взаимосвязанных "слоев": верхнего, освещенного (фотобиосфера), где существуют фотосинтезирующие организмы, и нижнего, почвенного (афотобиосфера), где расположена зона подземной жизни. Термодинамический уровень организованности биосферы проявляется в специфике градиентов температуры в гидросфере, атмосфере и литосфере. Выделяют также физический, или агрегатный, уровень организованности, т. е. наличие разных фазовых состояний вещества (твердого, жидкого, газообразного), одновременно характеризующих и его разное химическое состояние.[ ...]

Изобилие соответствует ситуации, когда запас биогенов в биосфере намного больше их расхода за все время произошедшей эволюции, т.е. когда время эволюции намного меньше времени биологического оборота биогенов. При изобилии биогенов исчезает необходимость в конкурентной борьбе между организмами за выживание. В такой ситуации могло бы происходить вытеснение более организованных особей менее организованными, но более агрессивными или увеличение размеров организмов выше допустимого.[ ...]

В. И. Вернадский впервые сформулировал закон о неизбежности перехода биосферы в высшую стадию - ноосферу, сферу разума, т.е. разумно и гармонично организованную жизнь. Современных ученых интересует проблема интеллектуальных ресурсов научно-технического прогресса, когда интеллект, обусловленный человеческим мозгом, рассматривается в качестве решающего природного ресурса.[ ...]

По Вернадскому, главной функциональной частью супергеосферы является биосфера. Ей, помимо всего, присуща организованность - свойство сохранять геофизические и геохимические параметры среды в некотором узком диапазоне, что, главным образом, и обеспечило непрерывное существование и эволюцию жизни на Земле на протяжении почти 4 млрд. лет.[ ...]

Биохимические процессы в организмах также представляют собой сложные, организованные в циклы цепи реакций. На воспроизведение их в неживой природе потребовались бы огромные энергетические затраты, в живых же организмах они протекают при посредстве белковых катализаторов - ферментов, понижающих энергию активации молекул на несколько порядков. Так как материалы и энергию для обменных реакций живые существа черпают в окружающей среде, они преобразуют среду уже тем, что живут. Вернадский подчеркивал, что живое вещество проводит гигантскую геолого-хи-мическую работу в биосфере, полностью преобразуя верхние оболочки Земли за время своего существования.[ ...]

Глава 2 была фактически целиком посвящена иерархии систем, прежде всего биосферы и входящего в нее живого. Общие принципы формирования иерархии: 1) дублирование относительно разнокачественных структур, составляющих в своей организованной совокупности нечто новое, т. е. наличие свойства эмерджентности (древние говорили: целое больше суммы его частей) и 2) определенность функциональной цели организации в рамках связей со средой и внутренних возможностей системы. Сам принцип иерархической организации, или принцип интегративных уровней, в биологии и экологии принимается как аксиома или эмпирически наблюдаемый факт (разд. 3.10). Столь же аксиоматически утверждается и проявление эмерджентности с переходом от одного уровня иерархии к другому. Эмерджентность - наличие у системного целого особых свойств, не присущих его подсистемам, элементам и (несистемным) блокам, а также сумме элементов и блоков, не объединенных системообразующими связями. Свойство цели как функциональное состояние и закономерность построения системы, достигаемая путем возникновения обратных связей, создает некое поле взаимодействий. Это поле не может быть бесконечным по способу организации, так как любая система существует в рамках ее характерного времени и пространства (размера).[ ...]

Второй важнейший принцип, выявленный В.И. Вернадским, - это принцип гармонии биосферы и ее организованности; в ней все учитывается и все приспособляется с той же точностью, с той же механичностью и с тем же подчинением мере и гармонии, какую мы видим в стройных движениях небесных светил и начинаем видеть в системах атомов вещества и атомов энергии (Вернадский В.И., 1967, с. 24).[ ...]

22

В абиотический период истории Земли это были геохимические циклы вещества; с появлением биосферы 2,5-3 млрд. лет назад они превратились в биогеохимические, а с появлением техносферы - в технобиогеохимические. Если еще совсем недавно вопрос ставился о биогеохимических циклах в природе и их нарушении человеком , то сейчас приходится ставить вопрос для существенной части земной поверхности и для большого числа ее компонентов, а именно, о тёхнобиогеохимических циклах как современной норме природы, поскольку речь идет уже не об отдельных: нарушениях природных циклов человеком, а об их полном преобразовании (например, цикл углерода, цикл воды). Если иметь в виду то, что энергия мировой индустрии сейчас имеет тенденцию удвоения через каждый 15 лет , а в Российской Федерации, через 7 - 8 лет, то можно себе представить стремительный рост техногенной составляющей во всех глобальных циклах. Это же обстоятельство необходимо учитывать и при анализе количественных оценок всех технобиогеохимических потоков в экосфере, интенсивность и скорость которых ежегодно возрастает, что требует постоянного корректирования оценок этих явлений.[ ...]

Очень близок по содержанию и объему к этому понятию принятый рядом авторов термин «охрана биосферы». Охрана биосферы - это система мероприятий, проводимых на национальном и международном уровнях и направленных на устранение нежелательного антропогенного или стихийного влияния на функционально взаимосвязанные блоки биосферы (атмосферу, гидросферу, почвенный покров, литосферу, сферу органической жизни), на поддержание выработавшейся эволюционно ее организованности и обеспечения нормального функционирования.[ ...]

Вторым главнейшим аспектом учения В. И. Вернадского является разработанное им представление об организованности биосферы, которая проявляется в согласованном взаимодействии живого и неживого, взаимной приспособляемости организма и среды. «Организм, - писал В. И. Вернадский, - имеет дело со средой, к которой он не только приспособлен, но которая приспособлена и к нему» (В. И. Вернадский, 1934).[ ...]

В.И.Вернадский (1980) подчеркивал, что принцип Реди “не указывает на невозможность абиогенеза вне биосферы или при установлении наличия в биосфере (теперь или раньше) физико-химических явлений, не. принятых во внимание при научном определении этой формы организованности земной оболочки"(с.179). Таким образом, он признавал возможность зарождения жизни, но отрицал это применительно к известным ему условиям биосферы, для которых такое феноменальное событие нигде и никогда не удалось ни наблюдать, ни воспроизвести. Поэтому не лишено смысла предположение о возможности заноса на Землю примитивных организмов, возникших вне ее. Занос мог иметь место, например, в составе ледяных метеоритов, когда Земля не была окутана плотным покровом атмосферы.[ ...]

Важно подчеркнуть, что городская среда как объект проектирования и исследования должна обладать организованностью. Имеется в виду использование понятия «организованности» именно в том смысле, в каком его ввел В. И. Вернадский: «Живое вещество, как и биосфера, обладает своей особой организованностью и может быть рассматриваемо как закономерно выраженная функция биосферы. Организованность не есть механизм. Организованность резко отличается от механизма тем, что она находится непрерывно в становлении, в движении всех ее самых мельчайших материальных и энергетических частиц» [ 1 ]. Аналогия корректна, так как городская среда нами рассматривается сегодня как закономерно выраженная функция биосферы .[ ...]

Э. В. Гирусов (1986) высказал мнение, что ломка развития человеческой деятельности должна идти не вопреки, а в унисон с организованностью биосферы, ибо человечество, образуя ноосферу, всеми своими корнями связано с биосферой. Ноосфера - естественное и необходимое следствие человеческих усилий. Это преобразованная людьми биосфера соответственно познанным и практически освоенным законам ее строения и развития. Рассматривая такое развитие биосферы в ноосферу с позиций системного подхода, можно заключить, что ноосфера - это новое состояние некоторой глобальной суперсистемы как совокупности трех мощных подсистем: «человек», «производство» и «природа», как трех взаимосвязанных элементов при активной роли подсистемы «человек» (Прудников, 1990).[ ...]

Я давно, 32 года назад, обратил внимание на отвечающее этому геохимическому явлению вездесущее проявление одной из форм организованности биосферы - на геологическое значение рассеянных химических элементов .[ ...]

Помимо этих трех физических состояний, в это равновесие входят и другие: 1. Все живые организмы, миллиардами рассеянные в биосфере, связаны между собой водой, непосредственно или их дыханием, организованно проникнуты водой от нескольких процентов (семена и споры) до 99,7% по весу, если не больше (§ 144), Это везде, как в океане и других водоемах, так и на суше.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И

СЕРВИСА

ИНСТИТУТ ИНФОРМАТИКИ ИННОВАЦИЙ И БИЗНЕС-СИСТЕМ

КАФЕДРА ЭКОЛОГИИ И ПРИРОДОПОЛЬЗОВАНИЯ

020801.65 «Экология»

Владивосток

Издательство ВГУЭС

Рабочая программа учебной дисциплины «Учение о биосфере» составлена в соответствии с требованиями ГОС ВПО.

Составитель: , доцент кафедры экологии

Утверждена на заседании кафедры ЭПП от 01.01.2001 г., протокол № 6, редакция 2014 г.

© Издательство Владивостокский

государственный университет

экономики и сервиса, 2014

ВВЕДЕНИЕ

Учение о биосфере – естественнонаучная дисциплина, направленная на формирование у студентов экологов биоцентрического мировоззрения и способностей оценить профессиональную деятельность с позиций рационального использования природных ресурсов и охраны окружающей среды . Природная среда биосферы обеспечивает человека сырьевыми ресурсами, энергией, различными материалами. Учение о биосфере помогает понять взаимосвязь организмов, популяций со средами обитания, взаимоотношения природных и антропогенных экосистем, условия устойчивого состояния экосистем, причины возникновения экологического кризиса, экологические принципы рационального природопользования , которые обеспечивают устойчивое развитие человечества. Изучая дисциплину «Учение о биосфере» студенты экологи рассматривают биосферу как глобальную экосистему, еѐ состав, структуру, внутренние связи, обеспечивающие еѐ функционирование и устойчивость. Дают оценку основным источникам загрязнения, анализируют экологические проблемы урбанизированных территорий. Изучают пути защиты биосферы от техногенного воздействия, рассматривают проблемы и пути сохранения биоразнообразия. Особое внимание уделяют проблемам влияния человека на глобальные процессы и климат биосферы. Изучение разных процессов биосферы позволяет воспитывать экологически ориентированное сознание студентов и формировать у них «экологизированный» стереотип поведения. Дисциплина «Учение о биосфере» направлена на изучение основных закономерностей функционирования природных систем различного уровня биосферы, факторов определяющей еѐ устойчивость, продуктивность, энергетику. Выявляется роль живого вещества в биогеохимических циклах, показывается логическая связь между традиционными исследованиями проблем взаимодействия природы – общества – хозяйства и концепцией устойчивого развития человечества, стремящейся к конструктивным решениям экологических проблем. Оценивается состояние глобальной экосистемы и пути стабилизации, улучшения современной биосферы. Изучение данного курса тесно связано с такими дисциплинами как «Биология», «Химия», «География», «Геология», «Почвоведение».

Особенностью изучения дисциплины «Учение о биосфере» является комплексный подход к экологическим проблемам, что дает возможность приобрести студентам экологам необходимую эрудицию, понять взаимосвязь биогеохимических процессов в биосфере. Для усвоения дисциплины необходимы базовые знания по географии, биологии, хи-мии, геологии, экологии, почвоведению.

1. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ

1.1. Цели и задачи дисциплины

Целью дисциплины является ознакомление студентов с основными понятиями, проблемами и методами науки «Учение о биосфере». Дисциплина предназначена для студентов по специальности 020801.65 – Экология. Основные задачи дисциплины – формирование навыков и умения по следующим направлениям деятельности:

· изучение основ «Учения о биосфере», еѐ границ и эволюции;

· характеристика биогенной миграции, биогеохимических круговоротов веществ, пространственно-временной цикличности химических элементов;

· ознакомление с планетарно-космической организованностью биосферы;

· рассмотрение термодинамической направленности развития биосферы, трансформации энергии живым веществом;

· изучение ноосферной концепции, как основы научного управления;

· формирование профессиональных компетенций .

1.2. Перечень компетенций, приобретаемых при изучении дисциплины

Дисциплина формирует профессиональный взгляд на геохимические , биогеохимические и биологические аспекты биосферы. Концепция биосферы направлена на формирование целостного представления о процессах и явлениях в глобальной экосистеме, о механизмах и законо-мерностях устойчивого существования биологических систем разного уровня в условиях сложной и динамической среды. Знания, полученные в процессе изучения дисциплины, формируют экологическое, ноосферное мировоззрение студента и развивают логическое мышление на всех уровнях организации живой материи (организменном, популяционном, экосистемном, биосферном).

1.3. Основные виды занятий и особенности их проведения

Общий объем дисциплины для специальности 020801.65 Экология 200 часов, из них 68 часов аудиторной нагрузки (34 часа лекции, 34 часа практические занятия) и 132 часов самостоятельной работы. Дисциплина «Учение о биосфере» изучается в 5 семестре, 4 часа в неделю, из них 2 часа лекции, 2 часа практических занятий. Дисциплина завершается сдачей экзамена. Основные виды занятий : - лекции, на которых дается основной систематизированный материал о структуре, организованности, свойствах и функциях биосферы; - практические занятия способствуют формированию у студентов экологов представления о взаимоотношениях организмов со средой обитания, структуре биосферы, еѐ эволюции, глобальных проблемах окружающей среды. Семинарские и практические занятия развивают умения прогнозировать результаты профессиональной деятельности с учетом прямых и косвенных последствий для биосферы; - консультации включают помощь при самостоятельном освоении материала; - самостоятельная работа включает в себя: работу с учебной и наеучной литературой при подготовке к практическим семинарским занятиям , контрольным работам и написании курсовой работы . В ходе изучения данной дисциплины студенты экологи слушают лекции, получают практические навыки на практических занятиях, занимаются, самостоятельно используя научную литературу , библиотечные электронные базы данных и Интернет при подготовке к экзамену и при защите курсовой работы.

1.4. Виды контроля и отчетности по дисциплине

Изучение дисциплины завершается экзаменом в 5 семестре. Студент должен на экзамене показать фактическую базу знаний планетарно-космической организованности биосферы, умение устанавливать причинно-следственные связи, формулировать выводы. Используются следующие виды контроля: - текущая аттестация, включающая выполнение студентом контрольных письменных заданий, устного опроса, докладов на семинарских занятиях, посещение лекций, тестирования.

1.5 Виды контроля и отчетности по дисциплине

Контроль успеваемости студентов осуществляется в соответствии с рейтинговой системой оценки знаний.

Текущий контроль успеваемости содержит задания, которые способствуют развитию компетенций профессиональной деятельности, к которой готовится студент и включает:

Проверку уровня самостоятельной подготовки бакалавра при выполнении индивидуального задания, при подготовке к лекциям и практическим работам ;

Участие бакалавра в дискуссиях по основным моментам изучаемой темы;

Microsoft Office (Excel, Word, Power Point, Acrobat Reader), Internet explorer, или другое аналогичное.

б) техническое и лабораторное обеспечение

Лекции и практические занятия проводятся в аудиториях с использованием мультимедийного оборудования

7. СЛОВАРЬ ОСНОВНЫХ ТЕРМИНОВ

Антропогенез - процесс историко-эволюционного формирования физического типа человека, первоначального развития его трудовой деятельности, речи, а также общества.

Биосфера - своеобразная оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами

Биоцентризм - научный подход в природоохранном деле, ставящий превыше всего интересы живой природы (какими они представляются человеку).

Устойчивое развитие - гармоничное (правильное, равномерное, сбалансированное) развитие - это процесс изменений, в котором эксплуатация природных ресурсов, направление инвестиций, ориентация научно-технического развития, развитие личности и институциональные изменения согласованы друг с другом и укрепляют нынешний и будущий потенциал для удовлетворения человеческих потребностей и устремлений.

Экологическая катастрофа – это внезапное событие, быстротекущий процесс, влекущий тяжелые последствия для экосистем, их разрушение, жертвы. Причиной таких изменений могут служить как внешнее воздействие на систему, так и разрядка ее внутренних напряжений, превысивших прочность структуры.

Экологический кризис – значительное региональное или локальное нарушение условий среды, которое приводит к полному или частичному нарушению местных экологических систем.

Биосферный уровень - высшая форма организации жизни на Земле. На этом уровне происходит объединение всех круговоротов веществ и превращения энергии в единый круговорот. Живое организовано по типу иерархичных систем: переход с одного уровня на другой связан с сохранением функциональных механизмов, действовавших на предыдущем уровне, и с появлением новых структур и функций, новых качеств. Уровень представлен биосферой - областью активной жизни. Она охватывает аэросферу (нижнюю часть атмосферы), гидробиосферу (гидросферу), террабиосферу (поверхность суши) и литобиосферу (верхнюю часть литосферы). Биосфера - достаточно тонкий слой: микробная жизнь распространена до высот 22 км над поверхностью, а в океанах наличие жизни обнаружено на глубинах до 10- 11 км ниже уровня моря. В земную кору жизнь проникает меньше, микроорганизмы найдены при бурении до глубин 2 - 3 км. Случайно живая материя попадает и в слои, лежащие рядом «над» и «под», их называют пара- и метабиосферой соответственно. Но «пленка жизни» покрывает всю Землю, даже в пустынях и льдах обнаружены следы живого. Распределение жизни крайне неравномерно. В почве (верхние слои литосферы), гидросфере и нижних слоях атмосферы - самое большое количество живого вещества.

Разработка учения о биосфере имеет свою историю. Одним из первых естествоиспытателей, смотревших на Землю как на целое, был М.В.Ломоносов. Он писал в работе «О слоях земных», что «чернозем не первообразная и не первозданная материя, но произошел от согнития животных и растущих тел со временем», что бурый уголь, каменный уголь и чернозем - результаты влияния организмов на грунт. Ломоносов дал общий очерк геологии Земли, доказывал ее древность как планеты. В то время даже окаменелости - ископаемые остатки организмов - далеко не всеми воспринимались как следы некогда бывшей жизни. В 1802 г. Ламарк в «Гидрогеологии» указывал на роль живых организмов в геологических процессах. В книге А. Гумбольдта «Космос» собрано много материала о влиянии живого на геологические структуры.



Зарождение отечественной агрохимии связано с Д.И.Менделеевым. Он исследовал проблемы питания растений и повышения урожайности


сельскохозяйственных культур. Эффективностью минеральных и органических удобрений занимались А.Н.Энгельгардт и Д.Н.Прянишников. Возникшая в начале XX в. геохимия исходила из принципов эволюции. Почвенным лесообразованием занимался В. А. Обручев, положив начало мерзлотоведению, он изучал тектонику и геологию. В.В.Докучаев своей работой «Русский чернозем» открыл почвоведение как научную дисциплину, стоящую на стыке геологии, биологии и химии. У него почва - особое природное тело, имеющее огромное значение для сельского хозяйства. Он дал первую в мире классификацию почв, изложил учение о ландшафтно-географических зонах, разработал планы борьбы с засухой, предусмотрев в них ряд агрономических и лесомелиоративных мер. Вместе с ним работали М. М. Сибирцев и П. А. Костычев. Сибирцев участвовал во многих экспедициях в южные степи России, написал первый учебник «Почвоведение» (1889). Костычев показал связь свойств почв с жизнедеятельностью растений и микроорганизмов, роль человека в изменении этих связей. Он установил (1886) решающую роль низших организмов в образовании перегноя (гумуса). Немецкий ученый Г.Гельригер показал опытным путем симбиоз бобовых культур с клубеньковыми бактериями (1888), что оказалось важным в агрономии.

Русский ученый В. Р. Вильямc доказал роль биологических факторов (природных сообществ высших зеленых растений и микроорганизмов) в формировании плодородия почв. Он первым подчеркнул значение биологического круговорота элементов в формировании не только органической, но и минеральной части почв, разработал научные основы травопольной системы земледелия (1914). Докучаев, преподававший минералогию, определил жизненные интересы В. И. Вернадского еще в студенческие годы. Вернадский исследовал эволюцию минералов земной коры (1908), создал геохимическую классификацию химических элементов, разработал учение о миграции атомов в земной коре, заложил основы генетического направления в минералогии, и именно общие проблемы минералогии и геологии привели его к концепции биогеохимии (1917). «Биосфера» Вернадского дает целостную картину механизма формирования земной коры с учетом определяющего влияния жизни.

В.И.Вернадский создал учение о биосфере как об активной оболочке Земли, в которой совокупная деятельность живых организмов - геохимический фактор планетарного масштаба и значения. Термин «биосфера», введенный (1875) Э.Зюссом, относился к совокупности организмов, обитающих на поверхности Земли. В понятие живых организмов Вернадский включил и человека. Он выделял в биосфере косное (солнечная энергия, горные породы, минералы и т.д.) и биокосное (почвы, поверхностные воды и органические вещества). Хотя живое вещество по массе и объему составляет незначительную часть биосферы, оно играет основную роль в геологических процессах, связанных с изменением нашей планеты.


По Вернадскому, биосфера - это живое вещество планеты и преобразованное им косное вещество. Понятие «биосфера» - фундаментальное понятие биогеохимии, а не биологическое и не геологическое. Биосфера организует процессы на Земле и около Земли, в ней происходят биоэнергетические процессы и обмен веществ вследствие жизнедеятельности. Живой организм - неотъемлемая часть земной коры, могущая изменять ее. Живое вещество - совокупность организмов, участвующих в геохимических процессах. Организмы берут из окружающей среды химические элементы, строят из них тела, возвращают их в ту же среду и в процессе жизни и после своей смерти. Потому живое вещество связывает биосферу воедино, является системообразующим фактором. Изменения в живом веществе происходят существенно быстрее, чем в косном, поэтому в нем пользуются понятием исторического времени, а в косном - геологического. В ходе геологических времен растет мощь живого вещества и его воздействия на косное вещество, и только в живом веществе за эти времена происходят качественные изменения. И живое вещество, возможно, имеет свой процесс эволюции, вне зависимости от изменения среды.

Если «жизненный цикл» отдельного организма конечен и его существование не беспредельно, то живое как целое можно считать геологически бессмертным. Геологически жизнь вечна, поэтому если отдельный индивидуум со временем теряет возможность совершать работу и прекращает свое существование, то сам процесс жизни отличается непрерывным ростом возможности совершать внешнюю работу. Эту идею он выразил в трех принципах, которые назвал биогеохимическими:

1 - свободная (биогеохимическая) энергия стремится в биосфере к максимальному проявлению;

2 - при эволюции видов выживают те организмы, которые своей жизнью увеличивают свободную энергию;

3 - заселение Земли должно быть максимально возможным в течение геологического времени.

Эти принципы выражают закон только живой природы и не противоречат законам термодинамики. Весь поток живого вещества от самых простейших до самых развитых форм, включая разум человека и общественный труд, является той формой движения материи, где действует закон убывания энтропии, тогда как она растет для неорганической материи. И эти два вида материи связаны в единое целое. Закон возрастания энтропии Вернадский успешно применял для объяснения космической эволюции Земли. А рождение биосферы рассматривал как планетарно-косми-ческую «особую точку» - качественный скачок, до которого на поверхности нашей планеты преобладали процессы неживой природы, а после которого стали преобладать процессы в живой при-


роде. Под действием лучистой энергии возникает и необратимо развивается органическая жизнь.

Вернадский считал, что жизнь на Земле возникла одновременно с формированием планеты: «Твари Земли являются созданием космического процесса, необходимой и закономерной частью стройного космического механизма». Среди множества закономерностей, имеющих место в биологии, геологии, биохимии и геохимии, Вернадский выделил основные эмпирические принципы.

1. Принцип целостности биосферы обеспечивается самосогласованностью всех процессов в биосфере. Жизнь ограничена узкими пределами - физическими константами, уровнями радиации и пр. Гравитационная постоянная определяет размеры звезд, температуру и давление в них. Если она станет меньше, звезды будут иметь меньшие массы, их температура станет недостаточной для протекания ядерных реакций; если чуть больше, звезды перейдут свою «критическую массу», выйдут из общего круговорота и превратятся в черные дыры. Постоянная электромагнитного взаимодействия определяет химические превращения, отвечает за электронную оболочку атомов и прочность связей в молекулах. Константа слабого взаимодействия, отвечающего за превращения элементарных частиц, при своем изменении «подорвет» весь наш мир. Константа сильного взаимодействия, отвечающего за стабильность ядер атомов, тоже не должна меняться, иначе в звездах реакции пойдут по-другому, могут не образоваться углерод и азот. Да и непонятно, возможна ли будет вообще жизнь нашего типа.

2. Принцип гармонии биосферы и ее организованности связан с предыдущим. Законы преобразования энергии на Земле, законы движения атомов есть отражение гармонии Космоса, ритмичности движения небесных тел. Основа существования биосферы - положение Земли в Космосе, наклон земной оси к эклиптике, определяющий климат и жизненные циклы всех организмов. Солнце - основной источник энергии биосферы и регулятор биологических процессов. Как отметил еще Ю. Р. Майер, «жизнь есть создание солнечного луча».

3. Космическая роль биосферы в трансформации энергии - можно рассматривать эту часть живой природы как дальнейшее развитие одного и того же процесса превращения солнечной световой энергии в действенную энергию Земли. Биосфера является одним и тем же космическим аппаратом с самых древнейших геологических времен. Жизнь все это время оставалась постоянной, менялась только ее форма. Само живое вещество не является случайным созданием. Источники энергии геологических явлений - космическая, преимущественно солнечная; планетная, связанная со строением и космической историей Земли; внутренняя энергия материи - радиоактивность. Живое вещество активно трансформирует солнечную энергию в химическое молекулярное движение и в сложность биологических структур.


4. Растекание жизни - проявление ее геохимической энергии, аналог закона инерции неживой материи. Мелкие организмы размножаются быстрее, чем крупные. Скорость передачи жизни зависит от плотности живого вещества.

5. Автотрофные организмы все нужное для жизни берут из окружающей их косной материи и не требуют для построения своего тела готовых соединений другого организма. Поле существования зеленых автотрофных организмов определяется прежде всего областью проникновения солнечных лучей.

6. Космическая энергия вызывает давление жизни, которое достигается размножением. Размножение организмов уменьшается по мере роста их количества.

7. Формы нахождения химических элементов: горные породы и минералы, магмы, рассеянные элементы, живое вещество. Земная кора - сложный механизм, где постоянно движутся атомы и молекулы, происходят разнообразные геохимические круговороты, определяемые в значительной мере деятельностью живого вещества. Закон бережливости в использовании живым веществом простых химических тел: раз вошедший элемент проходит длинный ряд состояний, и организм вводит в себя только необходимое количество элементов.

8. Жизнь на Земле полностью определяется полем устойчивости зеленой растительности. Пределы жизни определяются физико-химическими свойствами соединений, строящих организм, их неразрушимостью в определенных условиях среды. Максимальное поле жизни определяется крайними пределами выживания организмов. Верхний предел жизни обусловлен лучистой энергией, присутствие которой исключает жизнь и от которой предохраняет озоновый слой. Нижний предел связан с достижением высокой температуры. Интервал в 432 °С (от -252 до +180 °С) является предельным тепловым щитом.

9. Принцип постоянства количества живого вещества в биосфере. Количество свободного кислорода в атмосфере того же порядка, что и количество живого вещества (1,5-10 18 кг и 10 17 -10 18 кг). Скорость передачи жизни не может перейти пределы, нарушающие свойства газов. Идет борьба за нужный газ.

10. Всякая система достигает положения устойчивого равнове
сия,
когда ее свободная энергия равняется нулю или приближает
ся к нему, т. е. когда вся возможная в условиях системы работа про
изведена. Понятие устойчивого равновесия исключительно важно.

Антропный принцип, выдвинутый Г.М.Идлисом (1958), связан с первым из перечисленных здесь принципов Вернадского и состоит в точном соответствии значений мировых констант с возможностями существования жизни. Удивительная согласованность ряда величин производит впечатление, что может существовать скрытый принцип, упорядочивающий всю Вселенную. К этому


факту обращались очень многие. Сейчас его формулируют в двух вариантах - слабом и сильном. Как выразился известный американский физик Дж. Дайсон: «Если мы приглядимся ко Вселенной и увидим, как много случайностей послужили нам во благо, то кажется почти, что Вселенная знала, что мы появимся». Это - одна из формулировок слабого принципа, в английской литературе - WAP. Но он не отвечает на многие вопросы, например, почему Вселенная такова, что допустила зарождение жизни. А, может, не нужно создавать теорий, которые не допускают существование наблюдателя? Сильный принцип - возникновение жизни закономерно во Вселенной, но, может, появление наблюдателя и есть цель эволюции Вселенной?

Геологическую роль живого Вернадский классифицировал по пяти категориям: энергетическая, концентрационная, деструктивная, средообразующая, транспортная. Живые организмы творят миграцию химических элементов в биосфере посредством своего дыхания, питания, обмена веществ, непрерывной сменой поколений. Биогеохимическая энергия живого является источником энергии преобразования геосфер.

Учение о биосфере


Согласно воззрениям основоположника современного учения о биосфере академика В.И. Вернадского, с момента возникновения жизни на Земле происходил процесс длительного формирования единства живой и косной материи, т. е. биосферы (от гр. bios - жизнь, sphaira - шар). Термин «биосфера» был введен в 1875 г. австрийским ученым, иностранным почетным членом Петербургской академии наук Э.Зюссом (1831 - 1914). Биосфера - область активной жизни Земли (ее оболочка), состав, структура и энергетика которой обусловлены в основном деятельностью живых организмов (живого вещества). Живое вещество, по Вернадскому, - это носитель свободной энергии в биосфере, где все главные организмы связаны со средой обитания самоуправляемыми биологическими и геохимическими процессами. Ученый четко обозначил верхний и нижний пределы распространения жизни. Верхний предел обусловливается лучистой энергией, приходящей из космоса, губительной для живых организмов. Здесь имеется в виду жесткое ультрафиолетовое излучение, которое задерживается озоновым слоем (экраном). Его нижняя граница проходит на высоте около 15 км, верхняя - на рекордной высоте полета птиц. Нижний предел жизни связан с повышением температуры в земных недрах. На глубине 3... 3,5 км температура достигает 100 "С. Нижний предел жизни в океане колеблется от 5 см до 114 м ниже поверхности морского дна. Общая структура биосферы, в состав которой входят нижняя часть атмосферы (до озонового пояса - на высоте 20...25 км); вся гидросфера - океаны, моря, поверхностные воды суши (до максимальных глубин - 11022 м); поверхность суши; литосфера - верхние горизонты твердой земной оболочки, приведена на рис. 1.1. Например озоновый «экран», или озоновый слой, - это слой атмосферы в пределах стратосферы, расположен на разной высоте от поверхности земли и имеет наибольшую плотность озона. Высота озонового слоя у полюсов равна 1... 8 км, у экватора 17... 18 км, а максимальная высота присутствия озона 45... 50 км. Выше озонового слоя существование жизни невозможно (из-за жесткого ультрафиолетового излучения Солнца). Важнейшие характеристики состояния биосферы - это атом биомассы, количество углерода и связанной в биомассе (на поверхности и в почве) энергии, годичный прирост и количество минеральных веществ, заключенных в биомассе. Живое вещество суши составляет 1012...1013 т, биомасса лесов - 1011...12 т, минеральные вещества и азот - 1010 т. Около 90% биомассы биосферы сосредоточено в лесах. Годичный прирост биомассы в тайге равен 4...7%, в лиственных лесах 10... 15%, прирост травы 30...50%.
Рис. 1.1. Строение биосферы (по Г.В.Стадницкому, 1997) На рис. 1.2 показаны границы биосферы и распределение в ней живых организмов. Организмы связаны с окружающей средой биогенным током атомов: своим дыханием и размножением. Миграция химических элементов с помощью живых организмов и создает необходимые для них условия существования. Живые организмы аккумулируют солнечную энергию, превращают ее в химическую и создают все многообразие жизни. Миграция химических элементов в биосфере связана с жизнедеятельностью живых организмов, их дыханием, питанием, размножением, смертью и разложением. Живые организмы принимают участие в перераспределении химических элементов, образовании горных пород и минералов, выполняют особые геохимические функции: газообмен, концентрационную, окислительно-восстановительную, созидания и разрушения. Живые организмы в биосфере можно изучать на уровне популяций (группа особей одного вида, совместно населяющих общую территорию), сообществ (организмов, связанных с неорганической средой) и экосистем (совокупность организмов и неорганических компонентов, в которой может осуществляться круговорот веществ). Экосистема относительно устойчива во времени и термодинамически открыта в отношении притока и оттока живого вещества и энергии. Рис. 1.2. Распределение живых организмов в биосфере: 1 - озоновый слой; 2 - граница снегов; 3 - почва; 4 - животные, обитающие в пещерах; 5 - бактерии в нефтяных водах В некоторых типах экосистем вынос живого вещества за их пределы настолько велик, что их стабильность поддерживается в основном за счет притока такого же количества вещества извне, тогда как внутренний круговорот малоэффективен. Таковыми являются проточные реки, ручьи, участки на крутых склонах гор. Другие экосистемы, например леса, луга, озера и др., имеют более полный круговорот веществ и относительно автономны. Количество живого вещества тех или иных организмов или всего сообщества, приходящееся на единицу площади или объема, называется биомассой. Биомасса, производимая популяцией или сообществом (на единицу площади) в единицу времени, называется биологической продуктивностью. Участок земной поверхности с определенным составом живых и косных (приземный слой атмосферы, почва и др.) компонентов, объединенных обменом веществ и энергии, называется биогеоценозом, т. е. элементарной однородной единицей биосферы. Основную долю биомассы суши составляют зеленые растения - 99,2%, а в океане только 6,3%, в то время как масса животных и микроорганизмов суши равна 0,8%, а в океане - 93,7%. Масса живого вещества на поверхности материков в 800 раз превышает биомассу океана. Биосфера в видовом и морфологическом отношении чрезвычайно многообразна. Сейчас на Земле существует более 2 млн видов организмов, из которых на долю животных приходится более 1,5 млн, растений - всего лишь около 500 тыс. видов. Необходимо отметить, что в своих взглядах В.И.Вернадский подошел к биосфере как к планетарной среде, в которой распространено живое вещество. В отличие от ряда ученых, которые рассматривали биосферу только как совокупность живых организмов и продуктов их жизнедеятельности, Вернадский считал, что живое вещество (в биохимическом понимании) не может быть оторвано от биосферы, функцией которой оно является. Кроме того, биосфера есть область превращения космической энергии, ибо космические излучения, идущие от небесных тел, проникают сквозь всю толщину биосферы. Поэтому, по Вернадскому, биосфера есть «планетарное явление космического характера» , в котором преобладает живое вещество как основа биосферы. В живых организмах на порядок увеличивается скорость химических реакций в процессе обмена веществ. К уникальным особенностям живого вещества можно отнести следующие признаки: - способность быстро занимать или осваивать все свободное пространство. Данное свойство дало основание Вернадскому сделать вывод, что для определенных геологических периодов количество живого вещества было примерно постоянным; - способность к адаптации в различных условиях и в связи с этим освоение не только всех средств жизни (водной, почвенной), но и крайне трудных по физико-химическим параметрам условий; - высокая скорость протекания реакций. Она на несколько порядков выше, чем в неживом веществе. Например, гусеницы некоторых насекомых потребляют за день количество пищи, которое в 100...200 раз больше веса их тела; - высокая скорость обновления живого вещества. Подсчитано, что для биосферы она составляет в среднем 8 лет, при этом для суши - 14 лет, а для океана, где преобладают организмы с коротким периодом жизни (например, планктон), - 33 дня; устойчивость при жизни и быстрое разложение после смерти, с сохранением высокой физико-химической активности. Так, в атмосфере смена кислорода происходит за 2000 лет, углекислого газа - за 6,3 года. Процесс полной смены вод на Земле (в гидросфере) осуществляется за 2800 лет, а время, необходимое для фотосинтетического разложения всей массы воды, насчитывает 5...6 млн лет. В работах российских ученых доказано, что главными составными элементами живого вещества являются кислород (65... 70%) и водород (10%). Остальные элементы представлены углеродом, азотом, кальцием (от 1 до 10%), серой, фосфором, калием, кремнием (от 0,1 до 1%), железом, натрием, хлором, алюминием и магнием. Таким образом, живое вещество - это совокупность и биомасса живых организмов в биосфере. В.И.Вернадский писал: «На земной поверхности нет химической силы, более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем живые организмы, вместе взятые». Учение В.И.Вернадского о биосфере произвело переворот в геологии, во взглядах на причины ее эволюции. До Вернадского в эволюции верхних слоев литосферы, прежде всего земной коры, первенство отводилось физико-химическим процессам, в основном выветриванию. И только он показал преобразующую роль живых организмов, механизмов разрушения горных пород, изменения водной и атмосферной оболочек Земли. По Вернадскому, биосферу разделяют на необиосферу и палеобиосферу, более древнюю биосферу. В качестве примера последнего определения можно назвать скопления органических веществ (залежи каменных углей, нефти, горючих сланцев и др.) или запасы других соединений, образовавшихся при участии живых организмов (известь, мел, рудные образования, соединения кремния). Важнейшими особенностями биосферы являются ее организованность и устойчивое равновесие. Например, можно говорить о термодинамическом уровне организованности биосферы - наличии двух взаимосвязанных «слоев» верхнего, освещенного (фотобиосфере), и нижнего, почвенного (афотобиосфере). Термодинамический уровень организованности биосферы проявляется в специфике градиентов температуры в гидросфере, атмосфере и литосфере. Выделяют и другие уровни организованности и устойчивости биосферы. Современные философские концепции сводятся к тому, что процесс взаимодействия общества и биосферы должен быть управляемым во взаимных интересах. В отличие от биогенеза данный этап эволюции биосферы рассматривают в качестве этапа разумного развития, т.е. ноогенеза (от гр. noos - разум). Соответственно происходит постепенное превращение биосферы в ноосферу. Понятие «ноосфера» введено в XIX в. французским ученым и философом Э.Леруа (1870 - 1954) и развито французским философом Тейяр де Шарденом (1881 - 1955), а концепцию о ноосфере обосновал В. И. Вернадский. Под этим термином подразумевалось образование особой оболочки Земли со всеми ее атрибутами: обществом людей, строениями, языком и т.д. Ноосфера рассматривалась в качестве некоего «мыслящего пласта над биосферой». В.И.Вернадский считал, что ноосфера - это новое геологическое явление на Земле. В ней впервые человек становится мощной геологической силой. Но мыслить и действовать человек, как и все живое, может только в биосфере, с которой он связан и из которой не может выйти. На данном этапе эволюции жизни развитие пойдет по пути ноогенеза, являющегося этапом разумного регулирования взаимоотношений человека и природы, т.е. исправление уже имеющихся нарушений в природе и предотвращение нарушений и отклонений в будущем. По Вернадскому, биосфера неизбежно превратится в ноосферу, т.е. в сферу, где разум человека будет играть доминирующую роль в развитии системы человек-природа. Некоторые ученые рассматривают этот закон как социальную утопию. Но совершенно очевидно, что если человечество не начнет регулировать собственные воздействия на природу, опираясь на ее законы, то оно обречено на гибель. Условием создания ноосферы академик Вернадский считал научное и культурное объединение всего человечества, усовершенствование средств связи и обмена, открытие новых источников энергии, подъем благосостояния, равенство всех людей и исключение войн из жизни общества. К ключевым положениям учения о биосфере относятся функции живого вещества. К ним относится энергетическая функция - растения в процессе фотосинтеза аккумулируют солнечную энергию в виде органических соединений, энергия которых в дальнейшем является источником химической энергии биосферы. Внутри экосистемы эта энергия в виде «пищи» распределяется между животными. Например, коровы, овцы, козы и другие животные употребляют в качестве пищи траву и листву деревьев. Частично энергия рассеивается, а частично накапливается в отмершем органическом веществе. Это вещество переходит в ископаемое состояние. Так образовались залежи торфа, каменного угля, нефти и других полезных ископаемых. Другая функция - деструктивная, которая состоит в разложении, минерализации мертвого органического вещества и вовлечении образовавшихся минералов в биотический круговорот, а затем в разложении его (вещества) до простых органических соединений (углекислый газ, вода, метан, аммиак), которые вновь используются в начальном звене круговорота. Например, бактерии, водоросли, грибы, лишайники оказывают на горные породы сильнейшее химическое воздействие растворами целого комплекса кислот: угольной, азотной, серной. Разлагая с их помощью те или иные минералы, организмы извлекают и включают в биотический круговорот важнейшие питательные элементы: кальций, калий, натрий, фосфор, кремний. Третья функция - концентрационная. Эта функция заключается в избирательном накоплении в организмах атомов веществ, рассеянных в природе. Например, в морских организмах по сравнению с природной средой накапливаются в большом количестве микроэлементы, тяжелые металлы, в том числе ядовитые (ртуть, свинец, мышьяк и другие химические элементы). Их концентрация в рыбах может в сотни раз превосходить содержание в морской воде. Благодаря этому морские организмы полезны как источник микроэлементов. Четвертая функция живого вещества - средообразующая, состоит в трансформации параметров среды обитания (литосферы, гидросферы, атмосферы) в условиях, благоприятных для жизни организмов, в том числе человека, т. е. эта функция поддерживает в равновесии баланс вещества и энергии в биосфере. Вместе с тем живое вещество способно восстанавливать условия обитания среды, нарушенные в результате природных катастроф или антропогенного воздействия, если производимые возмущения не превышают пороговых значений. Несмотря на то, что общая масса живого вещества, покрывающая Землю, ничтожно мала, результаты жизнедеятельности организмов сказываются на составе литосферы, гидросферы и атмосферы. В.И.Вернадский объясняет такое состояние экосистемы тем обстоятельством, что масса организмов осуществляет свою планетарную роль за счет быстрого размножения, т. е. весьма энергичного круговорота веществ, связанного с этим размножением. Единственным источником энергии для всех природных процессов, развивающихся в биосфере, является солнечная радиация. Поток солнечной радиации на Землю приблизительно равен 4190 103 Дж/(м2- год). На единицу поверхности в среднем поступает 1/5 части общей величины потока. Сумма потоков солнечной энергии, приходящих к поверхности Земли и уходящих от нее, называется «радиационным балансом земной поверхности». Энергия радиационного баланса расходуется на нагревание атмосферы, испарение, теплообмен со слоями гидро- или литосферы и ряд других процессов. Некоторые из этих процессов влияют на фотосинтез, переходящий в форму химической энергии, и на создание органического вещества. Организмы, синтезирующие из неорганических соединений органические вещества с использованием энергии Солнца, называются автотрофами, а за счет энергии, освобождающейся при химических реакциях, - хемотрофа-ми. Организмы, питающиеся готовыми органическими веществами, называются гетеротрофами. Автотрофы и хемотрофы, производящие органическое вещество из неорганических соединений, называются продуцентами. Организмы, питающиеся органическими веществами и преобразующие их в новые формы, называются консументами. Организмы, превращающие в ходе жизнедеятельности органические остатки в неорганические вещества, называются редуцентами. Солнечная энергия на Земле вызывает два круговорота веществ: большой, или геологический, наиболее ярко проявляющийся в круговороте воды и циркуляции атмосферы, и малый, или биологический. Оба круговорота взаимосвязаны и представляют единый процесс. Геологический круговорот происходит в течение сотен тысяч или миллионов лет. Он заключается в том, что горные породы подвергаются разрушению, выветриванию, а продукты выветривания, в том числе растворимые в воде, сносятся потоками воды в мировой океан. Здесь они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Биологический круговорот является частью геологического и заключается в том, что питательные вещества почвы - вода, углерод - аккумулируются в живом веществе растений, расходуются на построение тела и осуществление жизненных процессов как их самих, так и организмов-консументов. Продукты распада органического вещества попадают в почву из мезофауны (например, из бактерий, грибков, червей, моллюсков и др.) и вновь разлагаются до минеральных компонентов, опять-таки доступных растениям и вновь вовлекаемых ими в поток живых веществ. Малый круговорот веществ, втягивая в свои многочисленные орбиты косную среду, обеспечивает воспроизводство живого вещества и оказывает активное влияние на облик биосферы. Одним из положений учения о биосфере является установление закона сохранения (бережливости) биосферы. Смысл закона заключается в том, что атомы, вошедшие в какую-нибудь форму живого вещества, или с трудом возвращаются, или не возвращаются назад, т. е. можно говорить об атомах, остающихся в живой материи в течение геологических периодов.

Биосфера - это сложная термодинамически открытая система на поверхности Земли, действующая благодаря энергии Солнца и жизнедеятельности живых организмов, аккумулирующая и перераспределяющая огромные потоки вещества и энергии. Этот процесс возможен только благодаря химическим свойствам циклических, или органогенных элементов, названных так В. И. Вернадским в его геохимической классификации элементов за их способность к многочисленным химическим обратимым процессам, а история всех этих элементов может быть выражена циклами.

Понятие «живое вещество» и весь комплекс представлений о его геохимической деятельности введены в науку В. И. Вернадским. В 1919 г. он писал: «Под именем живого вещества я буду подразумевать всю совокупность всех организмов, и животных, в том числе и человека. С геохимической точки зрения эта совокупность организмов имеет значение только той массой вещества, которая ее составляет, ее химическим составом и связанной с ней энергией. Очевидно, только с этой точки зрения имеет значение живое вещество и для почвы, так как, поскольку мы имеем дело с химией почв, мы имеем дело с частным проявлением общих геохимических процессов. Живое вещество, вошедшее в состав почвы, обусловливает в ней самые разнообразные изменения ее свойств, обычно не учитываемые в почвоведении. На первом месте я остановлюсь здесь на его влиянии на мелкозернистость почвы, ибо это свойство почвы является самым основным и резким ее отличием от всех других продуктов земной поверхности. Оно же определяет ход всех химических реакций в почве и делает из почвы активнейшую область с химической точки зрения в биосфере».

Тогда же ученый впервые высказал мысль о совместном нахождении химических элементов в живом веществе, которое определяется биологическими свойствами организмов, а не химическими свойствами элементов.

Для построения живых организмов из 105 химических элементов обязательны шесть - углерод, азот, водород, кислород, фосфор, сера. Для них характерны малый атомный вес, легкость отдачи и присоединения электронов. Главный элемент среди них - углерод. Благодаря способности атомов соединяться в цепи углерод может образовывать бесконечное множество соединений. Остальные пять элементов также чрезвычайно легко образуют общие электронные пары с атомами других элементов, в том числе и друг с другом.

Что касается количества накапливаемых элементов, то 99,9% живой массы организмов составляют элементы «исходной дюжины»: Н, С, N, О, Na, Mg, Р, S, С1, К, Са, Fe. Все они относятся к первым 26 элементам периодической системы, на что обратил внимание еще Д. И. Менделеев. Живая масса на 99% образована всего четырьмя элементами - Н, С, N, О, которые отличаются высокой реакционноспособностью, имеют хорошо растворимые соединения и активно взаимодействуют с углеродом.

В биосфере круговорот элемента будет быстрым и устойчивым только в том случае, если этот элемент не только растворим, но и летуч, т.е. если одно из его соединений может, подобно воде, возвращаться на сушу через .

Таких элементов в биосфере не менее трех: углерод, азот и сера. Среди их «воздушных» соединений - двуокись углерода (С02), метан (СН4), свободный азот (N2), аммиак (NH3), сероводород (H2OS) и двуокись серы (S02). Интересно, что в процессе круговорота углерод, азот и сера меняют свою валентность. Все они находятся в биосфере в более восстановленной форме, чем в окружающем мире.
В обмене веществ между живой и неживой природой наиболее важно перераспределение газов. Растения, синтезируя органическое вещество, поглощают из атмосферы углекислый газ и выделяют кислород. Связывание в органическом веществе 1 г углерода сопровождается выделением 2,7 г кислорода. С 1 га луга за год в атмосферу выделяется 10 - 12 тыс. м3 кислорода.

Важнейшая стадия круговорота - восстановление двуокиси углерода. По существу, это реакция присоединения водорода, дающая в результате формальдегид. Источником водорода служит дегидрирование воды (отнятие у нее водорода), при этом попутно освобождается кислород. Такой способ накопления энергии химических связей свойствен только зеленым растениям, но аккумулированная энергия становится пригодной для других жизненных реакций и для функционирования трофических () цепей. Углерод, фиксированный растениями и использованный затем не только ими, но и животными, возвращается во внешнюю среду, где может включиться в любой из геохимических круговоротов. Напомним, что для биосферы характерно не только присутствие живого вещества. В ней в значительных количествах содержится жидкая вода, принимает на себя мощный поток энергии солнечных лучей, в биосфере лежат поверхности раздела между веществами, находящимися в одной из трех фаз — твердой, жидкой и газообразной. Благодаря этому для биосферы характерен непрерывный круговорот вещества и энергии, в котором активнейшую роль играют живые организмы.