Что такое плоское зеркало в физике определение. Плоское, сферическое зеркало. Зеркальное отражение, диффузное отражение

  • 28.01.2024

На этом уроке вы узнаете об отражении света и мы сформулируем основные законы отражения света. Ознакомимся с этими понятиями не только с точки зрения геометрической оптики, но и с точки зрения волновой природы света.

Как мы видим подавляющее большинство предметов вокруг нас, ведь они не являются источниками света? Ответ вам хорошо знаком, вы его получили еще в курсе физики 8 класса. Мы видим окружающий нас мир за счет отражения света.

Для начала вспомним определение.

Когда световой луч падает на границу раздела двух сред, он испытывает отражение, то есть возвращается в исходную среду.

Обратите внимание на следующее: отражение света - это далеко не единственный возможный исход дальнейшего поведения падающего луча, частично он проникает в другую среду, то есть поглощается.

Поглощение света (абсорбция) - явление потери энергии световой волной, проходящей через вещество.

Построим падающий луч , отраженный луч и перпендикуляр в точку падения (рис. 1.).

Рис. 1. Падающий луч

Углом падения называется угол между падающим лучом и перпендикуляром (),

Угол скольжения.

Эти законы впервые были сформулированы Евклидом в его труде «Катоптрика». И с ними мы уже ознакомились в рамках программы физики 8 класса.

Законы отражения света

1. Падающий луч, отраженный луч и перпендикуляр в точку падения лежат в одной плоскости.

2. Угол падения равен углу отражения.

Из закона отражения света следует обратимость световых лучей. То есть если мы поменяем местами падающий луч и отраженный, то ничего не изменится с точки зрения траектории распространения светового потока.

Спектр применения закона отражения света весьма широк. Это и тот факт, с которого мы начали урок, что большинство предметов вокруг нас мы видим именно в отраженном свете (луну, дерево, стол). Еще одним хорошим примером использования отражения света являются зеркала и светоотражатели (катафоты).

Катафоты

Разберемся в принципе работы простого световозвращателя.

Катафот (от древнегреческого kata - приставка со значением усилия, fos - «свет»), световозвращатель, фликер (от англ. flick - «мигать») - устройство, предназначенное для отражения луча света в сторону источника с минимальным рассеиванием.

Каждый велосипедист знает, что передвижение в темное время суток без наличия катафотов может быть опасным.

Также фликеры используются в униформах дорожных рабочих, сотрудников ГИБДД.

Как ни удивительно, свойство катафота основано на простейших геометрических фактах, в частности на законе отражения.

Отражение луча от зеркальной поверхности происходит по закону: угол падения равен углу отражения. Рассмотрим плоский случай: два зеркала, образующих угол в 90 градусов. Луч, идущий в плоскости и попадающий на одно из зеркал, после отражения от второго зеркала уйдет ровно в том направлении, в котором пришел (см. рис. 2).

Рис. 2. Принцип действия углового катафота

Для получения такого эффекта в обычном трехмерном пространстве необходимо расположить три зеркала во взаимно перпендикулярных плоскостях. Возьмем уголок куба с краем в виде правильного треугольника. Луч, попавший на такую систему зеркал, после отражения от трех плоскостей уйдет параллельно пришедшему лучу в обратном направлении (см. рис. 3.).

Рис. 3. Уголковый отражатель

Произойдет световозвращение. Именно это простое устройство с его свойствами и называют уголковым отражателем.

Рассмотрим отражение плоской волны (волна называется плоской, если поверхности равной фазы представляют собой плоскости) (рис. 1.)

Рис. 4. Отражение плоской волны

На рисунке - поверхность, и - два луча падающей плоской волны, они параллельны друг другу, а плоскость - волновая поверхность. Волновую поверхность отраженной волны можно получить, если провести огибающую вторичных волн, центры которых лежат на границе раздела сред.

Различные участки волновой поверхности достигают отражающей границы не одновременно. Возбуждение колебаний в точке начнется раньше, чем в точке на промежуток времени . В момент когда волна достигнет точки и в этой точке начнется возбуждение колебаний, вторичная волна с центром в точке (отраженный луч ) уже будет представлять собой полусферу радиусом . Исходя из того, что мы только что записали, этот радиус так же будет равен отрезку .

Теперь мы видим: , треугольники и - прямоугольные, а значит, . А в свою очередь, и есть угол падения . А - угол отражения . Следовательно, мы получаем, что угол падения равен углу отражения .

Итак, при помощи принципа Гюйгенса ми доказали закон отражения света. Получить это же доказательство можно, пользуясь принципом Ферма.

В качестве примера (рис. 5.) изображено отражение от волнообразной, шероховатой поверхности.

Рис. 5. Отражение от шероховатой, волнообразной поверхности

На рисунке видно, что отраженные лучи идут в самых различных направлениях, Ведь направление перпендикуляра к точке падения для разного луча будет разным, соответственно, и угол падения, и угол отражения тоже будут разными.

Поверхность считается неровной, если размеры ее неровностей не меньше длины световых волн.

Поверхность, которая будет отражать лучи во все стороны равномерно, называется матовой. Таким образом, матовая поверхность гарантирует нам рассеянное или диффузное отражение, которое возникает вследствие неровностей, шероховатостей, царапин.

Поверхность, которая равномерно рассевает свет во все стороны, называется абсолютно матовой. В природе абсолютно матовую поверхность вы не встретите, тем не менее к ним очень близки поверхность снега, бумаги и фарфора.

Если же размер неровностей поверхности меньше длинны световой волны, то такая поверхность будет называться зеркальной.

При отражении от зеркальной поверхности параллельность пучка сохраняется (рис. 6.).

Рис. 6. Отражение от зеркальной поверхности

Приблизительно зеркальной является гладкая поверхность воды, стекла и полированного металла. Даже матовая поверхность может оказаться зеркальной, если изменить угол падения лучей.

В начале урока мы говорили о том, что часть падающего луча отражается, а часть поглощается. В физике есть величина, которая характеризует, какая доля энергии падающего луча отразилась, а какая поглотилась.

Альбедо

Альбедо - коэффициент, который показывает, какая доля энергии падающего луча отражается от поверхности, (от латинского albedo - «белизна») - характеристика диффузной отражательной способности поверхности.

Или иначе - это доля, выраженная в процентах отраженной радиации энергии от поступающей на поверхность.

Чем ближе альбедо к ста, тем больше энергия отражается от поверхности. Несложно догадаться, что коэффициент альбедо зависит от цвета поверхности, в частности, от белой поверхности энергия будет значительно лучше отражаться, чем от черной.

Самое большое альбедо для веществ у снега. Оно составляет порядка 70-90 %, в зависимости от его новизны и сорта. Именно поэтому снег медленно тает, пока он свежий, а точнее белый. Значения альбедо для других веществ, поверхностей указаны на рисунке 7.

Рис. 7. Значение альбедо для некоторых поверхностей

Очень важным примером применения закона отражения света являются плоские зеркала - плоская поверхность, которая зеркально отражает свет. Такие зеркала есть у вас в доме.

Разберемся, как строить изображение предметов в плоском зеркале (рис. 8.).

Рис. 8. Построение изображения предмета в плоском зеркале

Точечный источник света, испускающий лучи в разные направления, возьмем два близких луча, падающих на плоское зеркало. Отраженные лучи пойдут так, будто они исходят из точки , которая симметрична точке относительно плоскости зеркала. Самое интересное начнется, когда отраженные лучи попадут нам в глаз: наш мозг сам достраивает расходящийся пучок, продолжая его за зеркало до точки

Нам кажется, что отраженные лучи исходят из точки .

Эта точка и служит изображением источника света . Конечно же, в реальности за зеркалом ничего не светится, это всего лишь иллюзия, поэтому эту точку называют мнимым изображением.

От расположения источника и размеров зеркала зависит область видения - область пространства, из которой видно изображение источника. Область видения задается краями зеркала и .

Например, в зеркало в ванной можно смотреться под определенным углом, если отойти от него вбок, то вы себя или предмет, который хотите рассмотреть, не увидите.

Для того чтобы построить изображение произвольного предмета в плоском зеркале, необходимо построить изображение каждой его точки. Но если мы знаем, что изображение точки симметрично относительно плоскости зеркала, то и изображение предмета будет симметричным относительно плоскости зеркала (рис. 9.)

Данный урок посвящен плоскому зеркалу. Вы узнаете виды зеркал и виды оптических изображений. Познакомитесь с общими характеристиками изображений в плоских зеркалах, а также с зеркальным и рассеянным отражением света и поглощением света. В конце урока приведены интересные факты о зеркалах.

На сегодняшнем уроке речь пойдет о зеркалах, а точнее – о плоском зеркале.

Зеркало – это гладкая поверхность, которая отражает излучение (рис. 1). Оптические зеркала – это обычно полированные металлы или стекла, которые отражают почти весь видимый свет (рис. 2).

Рис. 1. Зеркало

Рис. 2. Оптическое зеркало

Зеркала бывают трех видов – плоские, вогнутые и выпуклые.

Плоские зеркала отражают излучения без искажений и дают изображение, близкое к оригиналу (рис. 3).

Рис. 3. Отражение в плоском зеркале

Вогнутые – концентрируют энергию излучения (рис. 4).

Рис. 4. Отражение в вогнутом зеркале

Выпуклые – рассеивают (рис. 5).

Рис. 5. Отражение в выпуклом зеркале

На сегодняшнем уроке мы подробнее поговорим о плоском зеркале.

Плоское зеркало – это плоская поверхность, зеркально отражающая свет (рис. 6).

Рис. 6. Плоское зеркало

Рассмотрим, как образуется изображение в плоском зеркале.

Пусть из точечного источника света на поверхность плоского зеркала падает расходящийся пучок света. Из множества падающих лучей выделим лучи, и . Пользуясь законами отражения света, построим отраженные лучи , ,.

Рис. . Построение отраженных лучей

Эти лучи пойдут также расходящимся пучком. Если продолжить их в противоположном направлении, все они пересекутся в одной точке , расположенной за зеркалом. Нам будет казаться, что эти лучи выходят из точки , хотя в действительности никакого источника света в этой точке не существует. Поэтому точку называют мнимым изображением точки .

Рис. . Построение мнимого изображения в зеркале

Зеркальное и рассеянное отражение света. Поглощение света

Вечером, когда в комнате горит свет, мы можем видеть свое отражение в оконном стекле, однако стоит нам задернуть шторы, и изображение пропадает. Мы не видим своего отражения в ткани.

Это связано с двумя физическими явлениями. Одно из них - отражение света.

Чтобы появилось изображение, свет должен отразиться от зеркальной поверхности. Если свет отражается от неровной и шероховатой поверхности, то такое отражение называется рассеянным, или диффузным (рис. 9).

Рис. 9. Отражение света от зеркальной и от шероховатой поверхностей

На такой поверхности нельзя получить изображение. Даже некоторые гладкие на ощупь поверхности, такие как кусок пластика или обложка книги, для света являются недостаточно гладкими, свет отражается от таких поверхностей рассеянно.

Другое физическое явление, влияющее на возможность видеть изображение, - это поглощение света. Физические тела могут не только отражать свет, но и поглощать его. Наилучший отражатель света - зеркало, оно отражает более 90 % света, падающего на него. Хорошими отражателями являются также тела белого цвета, именно поэтому в солнечный зимний день, когда все бело от снега, мы жмуримся, защищая глаза от яркого света. А вот черная поверхность поглощает практически весь свет, например, на черный бархат можно смотреть, не жмурясь, даже при самом ярком освещении.

Поговорим о том, какие виды оптических изображений существуют и что такое оптическое изображение.

Оптическое изображение - это картина, получаемая в результате прохождения через оптическую систему световых лучей, распространяющихся от объекта, и воспроизводящая его контуры и детали.

Различают два случая: действительное изображение и мнимое изображение.

Действительное изображение создается, когда после всех отражений и преломлений лучи, вышедшие из одной точки предмета, собираются в одну точку (рис. 10).

Рис. 10. Действительное изображение

Действительное изображение нельзя видеть непосредственно, можно увидеть его проекцию, поставив рассеивающие экраны. Действительное изображение создается такими оптическими системами, как объектив кинопроектора или фотоаппарата или собирающая линза (рис.11).

Рис. Оптические системы

Мнимое изображение - такое изображение, которое можно видеть глазом.

При этом каждой точке предмета соответствует выходящий из оптической системы пучок лучей, которые, если продолжить их обратно прямыми линиями, сошлись бы в одной точке. Возникает видимость, что пучок выходит именно оттуда.

Мнимое изображение создается такими системами, как бинокль, микроскоп, отрицательная или положительная линза, лупа, а также плоское зеркало. Плоское зеркало дает именно мнимое изображение.

Интересные факты

Существуют так называемые полупрозрачные зеркала, или, как их иногда называют, зеркальные, или односторонние, стекла.

Такие стекла применяются для скрытого наблюдения за людьми в целях контроля за поведение или шпионажа. При этом шпион находится в темном помещении, а объект наблюдения - в светлом (рис. 12). Принцип действия зеркального стекла в том, что тусклый шпион не виден на фоне яркого зеркального отражения. Полупрозрачных зеркал, которые пропускали бы свет в одну сторону и не пропускали в другую, не существует.

Рис. 12 Помещение с полупрозрачным зеркалом

Не так давно в новых американских аттракционах ужаса появились зеркальные лабиринты. В России первые зеркальные лабиринты появились в Санкт-Петербурге и приобрели большую популярность в развлекательной индустрии.

Проведем демонстрацию, с помощью которой выясним, как расположены предмет и его изображение относительно плоского зеркала.

Возьмем плоское стекло, закрепленное вертикально. С одной стороны стекла установим горящую свечу, с другой стороны – точно такую же, но не зажженную. Передвигая незажженную свечу, найдем такое ее расположение, когда эта свеча будет казаться горящей. В этом случае незажженная свеча окажется в месте, где наблюдается в стекле изображение горящей свечи.

Схематично изобразим местоположение стекла – прямая линия, зажженной свечи и незажженной свечи .

Эта точка также показывает местоположение изображения зажженной свечи (рис.). Если теперь соединить точки и и провести необходимые измерения, то мы убедимся, что прямая перпендикулярна отрезку , а длина отрезка равна длине отрезка .

Рис. . Местоположение изображения горящей свечи

Проведем еще ряд демонстраций, которые позволят нам охарактеризовать изображения в плоских зеркалах.

Возьмем плоское зеркало, линейку и ластик. Сначала линейку расположим так, чтобы ее ноль располагался около зеркала (рис. ).

Рис. . Расстояние от зеркала до предмета и его изображения

В результате мы увидим, что расстояние от зеркала до предмета равно расстоянию от зеркала до изображения предмета в зеркале. Сделаем на ластике отметку. Мы увидим, что изображение в зеркале симметрично самому предмету, однако не является тождественным (рис. ).

Рис. . Симметричность предмета и его изображения в зеркале

Благодаря проведенным демонстрациям можно установить общие характеристики изображений в плоских зеркалах:

  1. Плоское зеркало дает мнимое изображение предмета.
  2. Изображение предмета в плоском зеркале равно по размеру самому предмету и расположено на том же расстоянии от зеркала, что и предмет.
  3. Прямая, которая совмещает точку на предмете с соответствующей ей точкой на изображении предмета в зеркале, перпендикулярна поверхности зеркала.

Решение задач

Задача № 1

Почему на машинах скорой помощи надписи пишутся «перевернутыми»?

Решение

Водители других автомобилей должны быстро и безошибочно определить машину скорой помощи в потоке других машин, чтобы уступить ей дорогу. Такая ситуация возникает тогда, когда скорой помощи необходимо обогнать автомобиль и водитель может увидеть ее только в зеркало заднего вида.

Как мы уже знаем, изображение в зеркале не является тождественным, а является симметричным. Поэтому на машине скорой помощи пишут текст «перевернутым», чтобы водитель в зеркале заднего вида видел правильную надпись и мог своевременно совершить необходимые маневры.

Задача № 2

Какая минимальная высота должна быть у плоского зеркала, чтобы вы могли увидеть себя в нем в полный рост?

Решение

Изображение в зеркале равно предмету, расположенному перед зеркалом, и находится на том же расстоянии от зеркала, что и предмет. Нарисуем рисунок с изображением человека, стоящего перед зеркалом (рис. 16).

Рис. 16. Изображение человека, стоящего перед зеркалом

Человек, - изображение человека в зеркале, точка - глаз человека. Чтобы зеркало было минимального размера, края зеркала и должны располагаться на прямых и . Если точка будет выше этой прямой, то ее можно опустить, уменьшив высоту зеркала.

А если она будет ниже прямой, то мы не увидим часть головы нашего изображения в зеркале.

Отрезок, параллельный прямым и и расположенный на одинаковом расстоянии от них. Значит, это средняя линия треугольника . Пусть она равна половине основания треугольника или половине роста человека (рис. 17).

Если отражающая поверхность зеркала является плоской, то оно относится к типу плоских зеркал. Свет всегда отражается от плоского зеркала без рассеяния по законам геометрической оптики:

  • Угол падения равен углу отражения.
  • Падающий луч, отраженный луч и нормаль к поверхности зеркала в точке падения лежат в одной плоскости.

Следует помнить, что у стеклянного зеркала отражающая поверхность (обычно тонкий слой алюминия или серебра) помещается на его задней стороне. Ее покрывают защитным слоем. Это означает, что хотя основное отраженное изображение формируется на этой поверхности, свет будет также отражаться и от передней поверхности стекла. Образуется вторичное изображение, которое гораздо слабее основного. Оно, как правило, невидимо в повседневной жизни, но создает серьезные проблемы в области астрономии. По этой причине все астрономические зеркала имеют отражающую поверхность, нанесенную на переднюю сторону стекла.

Типы изображений

Существует два типа изображений: действительное и мнимое.

Действительное формируется на пленке видеокамеры, фотоаппарата или на сетчатке глаза. Световые лучи проходят через линзу или объектив, сходятся, падая на поверхность, и на своем пересечении образуют изображение.

Мнимое (виртуальное) получается, когда лучи, отражаясь от поверхности, образуют расходящуюся систему. Если достроить продолжение лучей в противоположную сторону, то они обязательно пересекутся в определенной (мнимой) точке. Именно из таких точек формируется мнимое изображение, которое невозможно зарегистрировать без использования плоского зеркала или других оптических приборов (лупы, микроскопа или бинокля).

Изображение в плоском зеркале: свойства и алгоритм построения

Для реального объекта, изображение, полученное с помощью плоского зеркала, является:

  • мнимым;
  • прямым (не перевернутым);
  • размеры изображения равны размерам объекта;
  • изображение находится на таком же расстоянии за зеркалом, как объект перед ним.

Построим изображение некоторого объекта в плоском зеркале.

Воспользуемся свойствами мнимого изображения в плоском зеркале. Нарисуем изображение красной стрелки с другой стороны зеркала. Расстояние А равно расстоянию В, а изображение имеет тот же размер, что и объект.

Мнимое изображение получается на пересечении продолжения отраженных лучей. Изобразим световые лучи, идущие от мнимой красной стрелки к глазу. Покажем, что лучи мнимые, нарисовав их пунктиром. Непрерывные линии, идущие от поверхности зеркала, показывают путь отраженных лучей.

Проведем от объекта прямые линии в точки отражения лучей на поверхности зеркала. Учитываем, что угол падения равен углу отражения.

Плоские зеркала используются во многих оптических приборах. Например, в перископе, плоском телескопе, графопроекторе, секстанте и калейдоскопе. Стоматологическое зеркало для осмотра полости рта тоже плоское.

Читатель : По-моему, достаточно построить ход произвольного отраженного от зеркала луча (рис. 13.3). Видно, что DABS ¢ = DABS как прямоугольные, имеющие общий катет АВ и равные острые углы: ÐВАS ¢ = ÐBAS = 90°– a, где a – угол падения луча на зеркало. Тогда S ¢B = BS. Поскольку ход наших рассуждений не зависит от величины угла a, то можно утверждать, что все лучи, идущие к мнимому источнику S , отражаются так, что отраженные лучи пересекаются в точке S ¢. Значит, точка S ¢ – это изображение мнимого источника S .

Читатель : Получается, что мнимый источник дает в плоскости зеркала действительное изображение, а действительный источник – наоборот, мнимое ?

Автор : Именно так! Заметим, что рассеивающая линза в этом смысле ведет себя очень похоже: действительный источник всегда дает в ней мнимое изображение, а вот мнимый источник может дать и действительное (хотя и не всегда).

Рис. 13.4 Рис. 13.5

Задача 13.1. Постройте ход лучей и определите положение изображения предмета АВ (рис. 13.4) в оптической системе, состоящей из собирающей линзы и плоского зеркала. Предмет АВ находится на расстоянии 1,5F от линзы.

Решение . Прежде чем выполнять построение, решим вспомогательную задачу: на собирающую линзу падает сходящийся пучок лучей. Построим изображение мнимого источника (рис. 13.5).

Направим в точку S еще один луч – луч 3 , параллельно главной оптической оси (рис. 13.6). После преломления он пройдет через главный фокус F (луч 3 ¢). Поскольку луч 1 проходит через линзу не преломляясь, то пересечение луча 3 ¢ с лучом 1 – это и есть искомое изображение (действительное!) S ¢ мнимого источника S .

Рис. 13.6

Теперь перейдем к решению нашей задачи (см. рис. 13.4). Будем решать ее поэтапно. Сначала построим изображение предмета АВ в линзе так, как если бы никакого зеркала не было (рис. 13.7). Увеличенное перевернутое действительное изображение получилось бы на расстоянии 3F за плоскостью зеркала.

Рис. 13.7

Но на пути сходящегося пучка лучей стоит плоское зеркало, поэтому изображение А ¢В ¢ оказывается мнимым источником для плоского зеркала. И этот мнимый источник должен давать действительное симметричное себе изображение А ²В ² относительно плоскости зеркала (рис. 13.8).

Рис. 13.8

Читатель : Подождите! Это действительное изображение А ²В ² получилось бы , если бы на пути лучей, отраженных от зеркала не стояла бы линза!

Рис. 13.9

Направим в точку В ² луч 1 , проходящий через оптический центр линзы, и луч 2 , параллельный главной оптической оси (рис. 13.9). После преломления луч 2 пройдет через главный фокус линзы (луч 2 ¢), а точка пересечения лучей 2 ¢ и 1 – это искомое изображение В ¢¢¢ точки В ².

Итак, действительное изображение А ¢¢¢В ¢¢¢ получилось перевернутым и расположенным на расстоянии F /2 перед плоскостью линзы. Полная картина хода лучей показана на рис. 13.10.

Читатель : А если бы предмет АВ находился к линзе ближе, чем фокусное расстояние (рис. 13.11)?

Рис. 13.11 Рис. 13.12

Автор : В этом случае линза давала бы мнимое изображение перед плоскостью линзы, которое бы «воспринималось» зеркалом как действительный источник (рис 13.12). Зеркало давало бы мнимое изображение этого источника, а линза «воспринимала» бы это мнимое изображение как действительный источник. Впрочем, все эти построения вы уже можете сделать самостоятельно.

СТОП! Решите самостоятельно: В1, С1.

Задача 13.2. За собирающей линзой с фокусным расстоянием F = 30 см расположено на расстоянии а = 15 см плоское зеркало, перпендикулярное главной оптической оси линзы. Где находится изображение предмета, расположенного перед линзой на расстоянии d = 15 см? Каким будет изображение – действительным или мнимым?

Значит, изображение мнимое и находится перед линзой на расстоянии | f | = 30 см. На рис. 13.13 – это отрезок А 1 В 1 .

2. Лучи, в первый раз прошедшие от предмета АВ через линзу, падают на поверхность зеркала так, как если бы они исходили от действительного предмета А 1 В 1 , расположенного на расстоянии | f | + a = 30 + 15 = 45 см от зеркала. Значит, зеркало дает мнимое изображение А 2 В 2 на расстоянии а + (| f | + a ) = 15 + (30 + 15) = 60 см за плоскостью линзы.

3. Теперь рассмотрим лучи, которые падают на линзу после отражения от зеркала. Линза «воспринимает» их так, как если бы они исходили от предмета А 2 В 2 , расположенного на расстоянии 60 см от линзы. (В данном случае 60 см – это двойное фокусное расстояние, т.е. 2F = 60 см.) Поэтому, даже не используя формулу линзы, можно утверждать, что действительное изображение получится на расстоянии 2F = 60 см перед плоскостью линзы. Причем этот изображение (А 3 В 3 на рис. 13.13) будет перевернутым.

Читатель : Получается, что мнимое изображение в зеркале А 2 В 2 дает действительное изображение в линзе?

Ответ : получаются три изображения: а) мнимое на расстоянии 30 см перед линзой; 2) мнимое на расстоянии 60 см за линзой; 3) действительное на расстоянии 60 см перед линзой.

СТОП! Решите самостоятельно: В2, С2, С4.

Задача 13.3. Перед собирающей линзой с фокусным расстоянием F находится точечный источник света на расстоянии 2F перед плоскостью линзы. За линзой под углом a = 45° к главной оптической оси расположено плоское зеркало. Плоскость зеркала пересекает главную оптическую ось линзы в главном фокусе (рис. 13.14). Где находится изображение?

Рис. 13.14

Рис. 13.15

Таким образом, для зеркала точка S 1 – это мнимый источник, значит, зеркало дает действительное изображение в точке S 2 , симметричной точке S 1 относительно плоскости зеркала.

Найдем положение точки S 2 . Рассмотрим треугольники AS 1 B и AS 2 B . Они оба прямоугольные, один катет АВ у них общий, а BS 1 = = BS 2 , так как точки S 1 и S 2 симметричны относительно плоскости зеркала. Следовательно, DAS 1 B = DAS 2 B и ÐВАS 2 = ÐBAS 1 = 45°. А это значит, что АS 2 ^ SS 1 , AS 2 = AS 1 = F .

Мы нашли положение точки S 2 – она находится на перпендикуляре к главной оптической оси линзы на расстоянии F от главного фокуса.

Ответ : действительное изображение находится на перпендикуляре к главной оптической оси линзы на расстоянии F от главного фокуса.

СТОП! Решите самостоятельно: В4, С5, D1.

Цели урока:

– учащиеся должны знать понятие зеркало;
– учащиеся должны знать свойства изображения в плоском зеркале;
– учащиеся должны уметь строить изображение в плоском зеркале;
– продолжить работу по формированию методологических знаний и умений, знаний о методах естественнонаучного познания и уметь применять их;
– продолжить работу по формированию экспериментальных исследовательских умений при работе с физическими приборами;
– продолжить работу по развитию логического мышления учащихся, по формированию умения строить индуктивные выводы.

Организационные формы и методы обучения: беседа, тест, индивидуальный опрос, исследовательский метод, экспериментальная работа в парах.

Средства обучения: Зеркало, линейка, ластик, перископ, мультимедийный проектор, компьютер, презентация (См. приложение 1 ).

План урока:

  1. Проверка д/з (тест).
  2. Актуализация знаний. Постановка темы, целей, задач урока вместе с учащимися.
  3. Изучение нового материала в процессе работы учащихся с оборудованием.
  4. Обобщение результатов эксперимента и формулирование свойств.
  5. Отработка практических навыков построения изображения в плоском зеркале.
  6. Подведение итогов урока.

Ход урока

1. Проверка д/з (тест).

(Учитель раздает карточки с тестом.)

Тест: Закон отражения

  1. Угол падения луча света на зеркальную поверхность равен 15 0 . Чему равен угол отражения?
    А 30 0
    Б 40 0
    В 15 0
  2. Угол между падающим и отраженными лучами равен 20 0 . Каким будет угол отражения, если угол падения увеличится на 5 0 ?
    А 40 0
    Б 15 0
    В 30 0

Ответы для теста.

Учитель: Обменяйтесь своими работами и проверьте правильность выполнения, сверив ответы с эталоном. Поставьте оценки, учитывая критерии оценок (ответы записаны на обратной стороне доски).

Критерии оценок за тест:

на оценку “5” – все;
на оценку “4” – задача № 2;
на оценку “3” – задача № 1.

Учитель: Вам была на дом задача № 4 Упр.30 (учеб. Перышкин А. В.) исследовательского характера. Кто справился с этим заданием? (Ученик работает у доски, предложив свою версию. )

Текст задачи: Высота Солнца такова, что его лучи составляют с горизонтом угол 40 0 . сделайте чертеж (рис.131) и покажите на нем, как нужно расположить зеркало АВ, чтобы “зайчик” попал на дно колодца.

2. Актуализация знаний. Постановка темы, целей, задач урока вместе с учащимися.

Учитель: Сейчас вспомним основные понятия, изученные на предыдущих уроках, и определимся с темой сегодняшнего урока.

Поскольку ключевое слово зашифровано в кроссворде.

Учитель: Какое ключевое слово получили? ЗЕРКАЛО.

Как вы думаете, какая тема сегодняшнего урока?

Да, тема урока: Зеркало. Построение изображения в плоском зеркале.

Откройте тетради, запишите число и тему урока.

Приложение. Слайд 1.

Учитель: На какие вопросы вы бы сегодня хотели получить ответы, учитывая тему урока?

(Дети задают вопросы. Учитель подводит итог, ставя, таким образом, цели урока.)

Учитель:

  1. Изучить понятие “зеркало”. Выявить виды зеркал.
  2. Узнать, какими свойствами оно обладает.
  3. Научиться строить изображение в зеркале.

3. Изучение нового материала в процессе работы учащихся с оборудованием.

Деятельность учащихся: слушают и запоминают материал.

Учитель: приступаем к изучению нового материала, следует сказать, что зеркала бывают следующие:

Учитель: Сегодня мы более подробно изучим плоское зеркало.

Учитель: Плоским зеркалом (или просто зеркало ) называют плоскую поверхность, зеркально отражающую свет

Учитель: Запишите в тетрадь схему и определение зеркала.

Деятельность учащихся: выполняют записи в тетраде.

Учитель: Рассмотрим изображение предмета в плоском зеркале.

Вы все хорошо знаете, что изображение предмета в зеркале образуется за зеркалом, там, где его на самом деле нет.

Как это получается? (Учитель излагает теорию, учащиеся принимают активное участие. )

Слайд 5. (Экспериментальнаядеятельность учащихся.)

Опыт 1. У вас на столе имеется маленькое зеркало. Установите его в вертикальном положении. Перед зеркалом на небольшом расстоянии расположите ластик в вертикальном положении. А теперь возьмите линейку, и положите ее так, чтобы ноль был у зеркала.

Задание. Прочтите вопросы на слайде и ответьте на них. (Вопросы части А.)

Учащиеся формулируют вывод: мнимое изображение предмета в плоском зеркале находится на таком же расстоянии от зеркала, как и предмет перед зеркалом

Слайд 6. (Экспериментальнаядеятельность учащихся. )

Опыт 2. А теперь возьмите линейку, и расположите ее вертикально вдоль ластика.

Задание. Прочтите вопросы на слайде и ответьте на них. (вопросы части Б)

Учащиеся формулируют вывод: размеры изображения предмета в плоском зеркале равны размерам предмета.

Задания к опытам.

Слайд 7. (Экспериментальнаядеятельность учащихся.)

Опыт 3. На ластике справа поставьте черту и разместите его снова перед зеркалом. Линейку можно убрать.

Задание. Что вы увидели?

Учащиеся формулируют вывод: предмет и его изображения являются фигурами симметричными, но не тождественными

4. Обобщение результатов эксперимента и формулирование свойств.

Учитель: ИТАК, эти выводы можно назвать свойствами плоских зеркал , перечислим их еще раз и запишем в тетрадь.

Слайд 8. (Учащиеся записывают свойства зеркал в тетрадь.)

  • Мнимое изображение предмета в плоском зеркале находится на таком же расстоянии от зеркала, как и предмет перед зеркалом.
  • Размеры изображения предмета в плоском зеркале равны размерам предмета.
  • Предмет и его изображения являются фигурами симметричными, но не тождественными.

Учитель: Внимание на слайд. Решаем следующие задачи (учитель спрашивает ответ у несколько ребят, а затем один учащийся излагает ход своих рассуждений, опираясь на свойства зеркал).

Деятельность учащихся: активное участие в обсуждении анализа задач.

1) Человек стоит на расстоянии 2м от плоского зеркала. На каком расстоянии от зеркала он видит свое изображение?
А 2м
Б 1м
В 4м

2) Человек стоит на расстоянии 1,5м от плоского зеркала. На каком расстоянии от себя он видит свое изображение?
А 1,5м
Б 3м
В 1м

5. Отработка практических навыков построения изображения в плоском зеркале.

Учитель: Итак, что такое зеркало мы узнали, установили его свойства, а теперь должны научиться строить изображение в зеркале, с учетом выше указанных свойств. Работаем вместе со мной в своих тетрадях. (Учитель работает на доске, учащиеся в тетради. )

Правила построения изображения Пример
  1. К зеркалу прикладываем линейку так, чтобы одна сторона прямого угла лежала вдоль зеркала.
  2. Двигаем линейку так, чтобы точка, которую хотим построить лежала на другой стороне прямого угла
  3. Проводим линию от точки А до зеркала и продляем ее за зеркало на такое же расстояние и получаем точку А 1 .
  4. Аналогично все проделываем для точки В и получаем точку В 1
  5. Соединяем точку А 1 и точку В 1 , получили изображение А 1 В 1 предмета АВ.

Итак, изображение должно быть таким же по размерам, как и предмет, находиться за зеркалом на таком же расстоянии, как и предмет перед зеркалом.

6. Подведение итогов урока.

Учитель: Применение зеркала:

  • в быту (по нескольку раз в день мы проверяем, хороши мы выглядим);
  • в автомобилях (зеркала заднего вида);
  • в аттракционах (комната смеха);
  • в медицине (в частности в стоматологии) и во многих других сферах, особый интерес представляет перископ;
  • перископ (применяют для наблюдения с подводной лодки или из окопов), демонстрация прибора, в том числе и самодельного.

Учитель: Вспомним, что мы сегодня изучили на уроке?

Что такое зеркало?

Какими свойствами оно обладает?

Как построить изображение предмета в зеркале?

Какие свойства учитываем при построении изображения предмета в зеркале?

Что такое перископ?

Деятельность учащихся: отвечают на поставленные вопросы.

Домашнее задание: §64 (учеб. Перышкин А. В. 8 класс), записи в тетради изготовить перископ по желанию № 1543, 1549, 1551,1554 (задачник Лукашик В. И.).

Учитель: Продолжите фразу …

Рефлексия:
Сегодня на уроке я научился …
Сегодня на уроке мне понравилось …
Сегодня на уроке мне не понравилось …

Выставление оценок за урок (выставляют учащиеся, объясняя при этом, почему ставят именно такую оценку).

Используемая литература:

  1. Громов С. В. Физика: Учеб. для общеобразоват. учеб. учреждений/ С. В. Громову, Н. А. Родина. – М.: Просвещение, 2003.
  2. Зубов В. Г., Шальнов В. П. Задачи по физике: Пособие для самообразования: Учебное руководство.– М.: Наука. Главная редакция физико-математической литературы, 1985 г.
  3. Каменецкий С. Е., Орехов В. П. Методика решения задач по физике в средней школе: Кн. для учителя. – М.: Просвещение, 1987.
  4. Колтун М. Мир физики. Издательство “Детская литература”, 1984.
  5. Марон А. Е. Физика. 8 класс: Учебно-методическое пособие / А. Е. Марон, Е. А. Марон. М.: Дрофа, 2004.
  6. Методика преподавания физики в 6–7 классах средней школы. Под ред. В. П. Орехова и А. В. Усовой. М. , “Просвещение”, 1976.
  7. Перышкин А. В. Физика. 8 кл.: Учеб. для общеобразоват. учеб. заведений.– М.: Дрофа, 2007.